LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Caption</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Methods of data collection</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Volume of tweets (Delhi election 2015)</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Finding keywords from RSS feed</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>Tag cloud showing most relevant keywords in RSS feeds</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Popularity of leaders during election based on tweet volume</td>
<td>41</td>
</tr>
<tr>
<td>3.6</td>
<td>Important issues during Delhi election 2015</td>
<td>42</td>
</tr>
<tr>
<td>3.7</td>
<td>Comparison of different exit polls</td>
<td>43</td>
</tr>
<tr>
<td>3.8</td>
<td>Case counts and H1N1 related tweet volume</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Selection procedure for topics and keywords from RSS feeds</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Proposed framework for emotion extraction</td>
<td>63</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparative results of emotion extraction method with corpus-based technique</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparative results of emotion extraction method with corpus-based technique</td>
<td>72</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparative results of emotion extraction method with corpus-based technique</td>
<td>73</td>
</tr>
<tr>
<td>5.1</td>
<td>Year wise cases of Influenza-A H1N1</td>
<td>77</td>
</tr>
<tr>
<td>5.2</td>
<td>Basic perception of rough set</td>
<td>78</td>
</tr>
<tr>
<td>5.3</td>
<td>Framework for identification of suspect</td>
<td>80</td>
</tr>
<tr>
<td>6.1</td>
<td>No. of tweets collected weekly (September 2016 to November 2016)</td>
<td>92</td>
</tr>
<tr>
<td>6.2</td>
<td>Proposed tweet classification method</td>
<td>93</td>
</tr>
<tr>
<td>6.3</td>
<td>Sentiment classification by tweets polarity</td>
<td>96</td>
</tr>
<tr>
<td>6.4</td>
<td>Sentiment classifications by emotions</td>
<td>97</td>
</tr>
<tr>
<td>6.5</td>
<td>Geolocation based activity of Twitter users posts related to Dengue and Chikungunya</td>
<td>100</td>
</tr>
<tr>
<td>6.6</td>
<td>Intelligent surveillance process model for decision making</td>
<td>101</td>
</tr>
<tr>
<td>6.7</td>
<td>Predicted surface using Kernel density estimation and</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Twitter features within Indian</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>6.8</td>
<td>Scatter plot of random population (400) and sentinel healthcare center</td>
<td>105</td>
</tr>
<tr>
<td>6.9</td>
<td>Contour plot of population density</td>
<td>105</td>
</tr>
<tr>
<td>6.10</td>
<td>Surveillance plot showing the number incident of mosquito-borne disease (y-axis) in the x% most threatened area</td>
<td>106</td>
</tr>
<tr>
<td>6.11</td>
<td>Density plots of mosquito-borne disease symptoms</td>
<td>107</td>
</tr>
<tr>
<td>7.1</td>
<td>The basic architecture for sentiment</td>
<td>113</td>
</tr>
<tr>
<td>7.2</td>
<td>A Conceptual Architecture of Deep Neural Network (DNN) for Text analysis</td>
<td>119</td>
</tr>
<tr>
<td>7.3</td>
<td>Architecture of the CNN used for sentiment analysis</td>
<td>120</td>
</tr>
<tr>
<td>7.4</td>
<td>Block diagram of basic operational steps used for sentiment analysis</td>
<td>121</td>
</tr>
<tr>
<td>7.5</td>
<td>LSTM memory block with one cell</td>
<td>123</td>
</tr>
</tbody>
</table>