REFERENCES


14. Bornali Gogoi, Bichitra Kalita, “Algorithm for Designing VLSI Floor plan using Planar Triangulated Graph”, International Journal of Information and


78. JY Lee, SY Shin, TH Park, BT Zhng, “Solving travelling salesman problems with DNA molecule encoding numerical values”, Biosystems, Elsevier, 2004


82. S. J. Haggarty, P. A. Clemons, S. L. Schreiber, “ Chemical Genomic Profiling of Biological Networks using Graph theory and combinations of small molecule


86. X. Qi, Q. Wu, Y. Zhang, E. Fuller, C. Q. Zhang, “A Novel Model for DNASequence Similarity Analysis Based on Graph Theory “, Evolutionary Bioinformatics, 7, 2011

87. T. Milenkovi,” Graph theoretical approaches for studying biological networks”, Department of Computer Science University of California, Irvine copyright 2008 by ijana Milenkovi, 2008.

89. J. Kaptcianos, “A graph theoretical approach to DNA fragment assembly”,

90. GXL, web page: http://www.gupro.de/GXL/examples/hypergraphNav.html.

91. Marta Kasprzak, “On the link between DNA sequencing and graph theory”,

nucleotide series especially suited for long DNA sequences”, J. Biol. Chem. 258
(1983), 1318-1327.

93. X. Guo, A. Nandy, “Numerical characterization of DNA sequences in a 2D
graphical representation scheme of low degeneracy”, Chem. Phys. Lett. 369

International Journal of Innovative Technology and Exploring Engineering ISSN 2278-
3075, Volume 2 issue 5, pp. 46-51, April 2013


96. R. M. Ldury, M. S. Waterman, “A new algorithm for DNA sequencing assembly”,

97. P. Kalita and B. Kalita, “SCS and TSP in DNA Sequencing”, IJMIE, ISSN: 2249-


