Abstract... 3-7
List of tables.. 13-14
List of figures.. 15-16
List of Abbreviations.. 17-18

CHAPTER 1
General Introduction
1.1 Tuberculosis: a historical perspective.. 19
1.2 Disease and epidemiology... 20
1.3 Anti-tubercular drugs... 21-22
1.4 Mycobacterium tuberculosis... 23
1.5 Cell wall of Mycobacterium tuberculosis... 23-24
1.6 Main features of tuberculosis: from infection to host defense... 24-25
1.7 Genome organization of H37Ra and H37Rv strains of MTB... 25-26
1.8 Multi-omics approaches and their applications in biology and medicine................................. 26-27
1.9 Limitations of high-throughput studies... 27

CHAPTER 2
Literature review
2.1 Origin of H37Ra strain... 28
2.2 Clinical importance of H37Ra and H37Rv strains... 28
2.3 Comparative genomics of H37Ra and H37Rv strains.. 29-30
2.4 Comparative transcriptomics of H37Ra and H37Rv strains - evidence for virulence attenuation... 31
2.5 Molecular determinants of virulence in M. tuberculosis... 32
2.6 Role of *M. tuberculosis* secretory proteins in diagnosis and vaccine development… 33

2.7 Role of phosphorylation in bacterial virulence and pathogenesis………………… 34-35

2.8 Interplay between *M. tuberculosis* and host cell signaling through IL-10 - an insight into bacterial persistence…………………………………………………………. 36-37

CHAPTER 3

Quantitative proteomic and phosphoproteomic analysis of virulent (H37Rv) and virulence attenuated (H37Ra) strains of *Mycobacterium tuberculosis*

3.1 Overview………………………………………………………………………………….. 38

3.1.1 H37Ra and H37Rv strains of *Mycobacterium tuberculosis*………………… 38

3.2 Materials and Methods

3.2.1 *Mycobacterium tuberculosis* H37Ra and H37Rv culture………………………… 39

3.2.2 Culturing of H37Ra and H37Rv strains………………………………………………. 40

3.2.3 Cell lysis and protein extraction …………………………………………………. 41

3.2.4 Trypsin digestion……………………………………………………………………. 42

3.2.5 Tandem mass tag (TMT) labeling………………………………………………. 43

3.2.6 Basic pH RPLC (bRPLC) fractionation……………………………………………. 44

3.2.7 TiO₂-based phosphopeptide enrichment………………………………………. 44

3.2.8 LC-MS/MS Analysis…………………………………………………………………. 45

3.2.9 Data analysis…………………………………………………………………………. 45

1) Generation of peak list files……………………………………………………………. 45

2) Use of multiple search engines…………………………………………………………. 46

3) Database search for protein and phosphopeptide identification…………………… 46

4) Data availability…………………………………………………………………………. 46

5) Bioinformatics analysis……………………………………………………………. 47

6) Network analysis of differentially expressed and phosphorylated proteins……… 47
3.3 Results and discussion

3.3.1 Overview of mass spectrometry data…………………………………………………………… 48-49
3.3.2 Altered protein expression in virulent and avirulent strains of *M. tuberculosis*………… 50-51
3.3.3 Phosphorylation is correlated with protein abundance……………………………………….. 52
3.3.4 Identification of novel phosphosites in *Mycobacterium tuberculosis*………………… 54
3.3.4.1 Novel Serine/threonine phosphosites in virulence-associated proteins……………… 53-54
3.3.4.2 Novel protein tyrosine phosphorylation and its role in MTB virulence…………….. 55-56
3.3.5 Quantitative changes in phosphoproteome of virulent and avirulent strains……….. 57
3.3.6 Phospho-motif analysis of differentially phosphorylated proteins………………….. 58
3.3.7 Identification of similar motifs in human system……………………………………………… 59
3.3.8 Change in *M. tuberculosis* kinome and their substrates in virulent and avirulent strains…………………………………………………………………………………………………… 60-63
3.3.8.1 Changes in proteins from region of difference (RD)…………………………………….. 64
3.3.9 Enrichment of virulence-associated pathways in MTB…………………………………… 65
3.3.10 Alterations in virulence associated type VII secretion system………………………… 66-68
3.3.11 Functional classification of the identified proteins reveals marked differences between the two strains………………………………………………………………………………….. 69
3.3.12 Significance of bacterial growth phase in tuberculosis pathogenesis…………………. 70
3.3.13 Gene mutations in H37Ra and their effect on protein expression and phosphorylation…………………………………………………………………………………………………….. 71-76

CHAPTER 4

Proteomic analysis of immunologically important proteins of *Mycobacterium tuberculosis* with relevance to diagnosis and virulence

4.1 Overview………………………………………………………………………………………….. 77
4.1.1 Challenges in Tuberculosis diagnosis……………………………………………………… 78
4.1.2 Purified protein derivative (PPD-CT68) and its relevance in TB diagnosis

4.2 Materials and methods

4.2.1 Trypsin digestion

4.2.2 LC-MS/MS analysis

4.2.3 Proteomic data analysis

4.3 Results and discussion

4.3.1 Identification of proteins present in PPD-CT68 using mass spectrometry

4.3.2 Functional classification of proteins identified in PPDs

4.3.3 Immunodominant proteins present in PPD and proteins overexpressed in H37Rv strain

4.3.4 Network analysis of immunodominant proteins

4.3.5 Epitope mapping and identification of potential antigenic regions shared between M. tuberculosis and lung infecting bacteria

4.3.4 PPD proteins as candidate biomarkers for TB diagnosis

CHAPTER 5

Interleukin-10 signaling regulation by Mycobacterium tuberculosis - a survival strategy

5.1 Overview

5.1.1 Interleukin-10: An anti-inflammatory cytokine

5.1.3 Significance of the proposed objective

5.1.2 Structure of human Interleukin-10

5.1.3 Role of interleukin-10 in Mycobacterium tuberculosis infection

5.2 Materials and methods

5.2.1 Literature survey and pathway curation

5.2.2 Interleukin-10 pathway map generation and visualization