## CONTENTS

**Chapter - 1**  Introduction to nano particles, their development by Green process and their significance  1-23

1.1 Introduction  1
1.2 Nano particles  2
1.3 History  3
1.4 Source of nano particles  4
1.4.1 Natural source  4
1.4.2 Industrial production of nano particles  5
1.4.3 Unintentional production of nano particle  5
1.4.4 Homemade nano particles  6
1.5 Properties of nanoparticles  6
1.6 Significance of nano particles in biomedicine  8
1.7 Classification of Nano particles  8
1.7.1 Natural nano particles  9
1.7.2 Anthropogenic nano particles  9
1.8 Synthesizing methods of nano particles  15
1.8.1 Green Process  16
1.8.2 Significance of Green Process  16
1.9 Objectives of the research  17
1.10 References  19

**Chapter – 2**  Cellulose–polymer–Ag nanocomposite fibres for antibacterial fabrics/skin Scaffolds  25-46

2.1 Introduction  25
2.2 Experimental  27
2.2.1 Materials  27
2.2.2 Preparation of polymer Ag-nano particles (Poly-AgNPs) solutions  27
2.2.3 Preparation of cellulose-silver nanocomposites fibres (CSNCFs)  28
2.2.4 Characterizations  28
2.2.5 Antibacterial activity  29
2.3 Results and discussions  29
2.3.1 UV-Visible spectral analysis  32
2.3.2 Transmission electron microscopic (TEM) analysis 34
2.3.3 Fourier transform infrared (FTIR) analysis 35
2.3.4 Scanning electron microscopy-energy dispersive spectroscopic (SEM-EDS) analysis 38
2.3.5 Mechanical properties 39
2.3.6 Thermal analysis 40
2.3.7 Antibacterial properties 41
2.4 Conclusion 43
2.5 References 44

Chapter – 3 Development of microbial resistant Ag<sup>0</sup>-transdermal surgical cellulose scaffolds via environmental friendly green process 48-70
3.1 Introduction 48
3.2 Experimental 50
3.2.1 Materials 50
3.2.2 Fabrication of Poly-AgNPs Bandage (PAB) 51
3.2.3 Characterizations 51
3.2.4 Swelling ratio studies 52
3.2.5 Antibacterial activity studies 52
3.3 Results and discussions 53
3.3.1 UV-Visible spectral analysis 56
3.3.2 Transmission electron microscopic (TEM) analysis 57
3.3.3 Fourier transform infrared (FTIR) analysis 58
3.3.4 Scanning electron microscopy-energy dispersive spectroscopic (SEM-EDS) analysis 60
3.3.5 Thermal analysis 62
3.3.6 Swelling studies 63
3.3.7 Antimicrobial properties 64
3.4 Conclusion 66
3.5 References 68

Chapter – 4 Microbial resistant nanocurcumin-gelatin-cellulose fibres for advanced medical applications 72-96
4.1 Introduction 72
4.2 Experimental 74
4.2.1 Materials 74
4.2.2 Synthesis of curcumin nano particles (nanocurcumin) 74
4.2.3 Preparation of nanocurcumin-gelatin cellulose fibres (NCGCFs) and curcumin-gelatin cellulose fibres (CGCFs) 75
4.2.4 Characterizations 76
4.2.5 Cumulative releasing studies 76
4.2.6 Swelling properties 77
4.2.7 Antibacterial activity studies 77
4.3 Results and discussions 78
4.3.1 Transmission electron microscopic (TEM) analysis 81
4.3.2 $^1$H Nuclear magnetic resonance ($^1$H NMR) spectral analysis 81
4.3.3 Fourier transform infrared (FTIR) analysis 82
4.3.4 Scanning electron microscopic (SEM) analysis 84
4.3.5 Thermal analysis 85
4.3.6 Cumulative releasing studies 86
4.3.7 Swelling studies 86
4.3.8 Antimicrobial activity 88
4.4 Conclusion 91
4.5 References 92

Chapter – 5 Green fabrication of novel Au-core Ag-shell nanocomposite hydrogels for various biomedical applications 98-121
5.1 Introduction 98
5.2 Experimental 101
5.2.1 Materials 101
5.2.2 Preparation of the Mint leaves’ extract 101
5.2.3 Fabrication of hydrogels 102
5.2.4 Fabrication of Au-core Ag-shell nanocomposite hydrogels 103
5.2.5 Characterizations 103
5.2.6 Swelling ratio 104
5.2.7 Antibacterial test 104
5.3 Results and discussions 105
5.3.1 Transmission electron microscopic (TEM) analysis 107
5.3.2 Scanning electron microscopy-energy dispersive spectroscopic (SEM-EDS) analysis 108