# Index

## Chapter – I
Studies on the synthesis and application of novel 1, 3-thiazole derivatives

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Anticancer activities of 1,3,4-Thiadiazole</td>
<td>8</td>
</tr>
<tr>
<td>1.1.2 Anticancer activities of 1,3-Thiazoles</td>
<td>13</td>
</tr>
<tr>
<td>1.2 Concept for the present work</td>
<td>16</td>
</tr>
<tr>
<td>1.2.1 1,3,4 thiadiazole</td>
<td>17</td>
</tr>
<tr>
<td>1.2.2 1,3- Thiazoles</td>
<td>17</td>
</tr>
<tr>
<td>1.2.2.1 Resonance of the thiazole</td>
<td>18</td>
</tr>
<tr>
<td>1.2.3 Thiosemicarbazones</td>
<td>19</td>
</tr>
<tr>
<td>1.2.4 4-hydroxy acetophenone</td>
<td>20</td>
</tr>
<tr>
<td>1.3 Schematic representation of research work</td>
<td>21</td>
</tr>
<tr>
<td>1.4 References</td>
<td>22</td>
</tr>
</tbody>
</table>

## Chapter – II
Literature methods for the synthesis 1,3,4-thiadiazole and 1,3-thiazole derivatives

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Synthetic review of 1,3,4-Thiadiazole derivatives</td>
<td>26</td>
</tr>
<tr>
<td>2.1.1 Synthesis of 1,3,4 thiadiazoles from Acid Hydrazides</td>
<td>27</td>
</tr>
<tr>
<td>2.1.2 Synthesis of 1,3,4 thiadiazoles from Thiosemicarbazides</td>
<td>27</td>
</tr>
<tr>
<td>2.1.3 Literature review for synthesis of thiazole</td>
<td>35</td>
</tr>
<tr>
<td>2.2 References</td>
<td>40</td>
</tr>
</tbody>
</table>

## Chapter – III
Synthesis of novel o-acylated acetophenone and its thiosemicarbazones

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>42</td>
</tr>
<tr>
<td>3.2 Materials and methods</td>
<td>44</td>
</tr>
<tr>
<td>3.2.1 Materials</td>
<td>44</td>
</tr>
<tr>
<td>3.2.2 General procedure for synthesis of O-acylated acetophenone based thiosemicarbazones (B1-B10)</td>
<td>44</td>
</tr>
<tr>
<td>3.2.2.1 General scheme for the synthesis of O-acylated acetophenone (product code A1-A10)</td>
<td>45</td>
</tr>
<tr>
<td>3.2.2.1.1 Step-1-Conversion of carboxylic acids to carboxylic acid chloride</td>
<td>47</td>
</tr>
</tbody>
</table>
3.2.2.1.2. Step-2: O-acylation of 4-hydroxy acetophenone

3.2.2.1.3. Synthesis of O-acylated acetophenone by using ultrasonic irradiation

3.2.2.1.4. Synthesis of O-acylated acetophenone by using by microwave method

3.2.2.2. Procedure for the synthesis of aryl substituted acetophenone thiosemicarbazone

3.2.2.3. Procedure for the synthesis of alkyl substituted thiosemicarbazone

3.2.2.3.1. Synthesis of O-acylated thiosemicarbazone by ultrasonic irradiation

3.2.2.3.2. Synthesis of O-acylated thiosemicarbazone by microwave method

3.2.2.4. Isolation and characterization of product

3.3. Results And Discussions

3.3.1. Optimization of base catalyst

3.3.2. X-Ray Crystallography of 4-acetylphenyl 3-methylbenzoate (compound A3)

3.3.3. X-Ray Crystallography of 4-[(1-(2-carbamothioylhydrazinylidene)ethyl] phenyl benzoate (compound B1)

3.3.4. X-Ray Crystallography of 4-[(1-(2-carbamothioylhydrazinylidene)ethyl] phenyl 4-methylbenzoate (compound B4)

3.4. References

Chapter IV

Synthesis of Chiral 1,3,4 thiadiazole from o-acylated acetophenone thiosemicarbazones

4.1. Introduction

4.2. Materials and methods

4.2.1. Materials

4.2.2. General procedure for the Synthesis of alkyl and aryl substituted 1, 3, 4-Thiadiazoles

4.2.3. Synthesis of chiral 1, 3, 4-thiadiazole molecules
4.2.3.1. Procedure for preparation of catalysts
  4.2.3.1.1. Non-chiral boranes
  4.2.3.1.2. Oxaza borolidines
  4.2.3.1.3. Amino ester boranes
  4.2.3.1.4. (+) 2-chloro glycine phenyl methyl ester
  4.2.3.1.5. Bicyclo boranes

4.2.4. General Scheme for the synthesis of Chiral 4-[3-acetyl-5-(acetylamino)-2-methyl-2,3-dihydro-1,3,4-thiadiazol-2-yl]phenyl 4-methylbenzoate using Catalysts 1 – 10

4.2.5. Isolation and characterization of product

4.3. Results and discussion
  4.3.1. Catalyst behavior on the 1,3,4-Thiadiazole reaction
  4.3.2. Conditions for Chiral HPLC analysis
  4.3.3. Positional effect of substituents on optical purity of 1,3,4-TDZ reaction
  4.3.4. X-Ray Crystallography of 4-[3-acetyl-5-(acetylamino)-2-methyl-2,3-dihydro-1,3,4-thiadiazol-2-yl]phenylpropanoate (compound C9)
  4.3.5. Chiral 1,3,4-Thiadiazoles

4.4. References

Chapter –V Synthesis of 1,3-Thiadiazole from o-acylated acetophenone thiosemicarbazones

5.1. Introduction

5.2. Materials and methods
  5.2.1. Materials
  5.2.2. General procedure for the Synthesis of alkyl and aryl Substituted 1, 3-Thiazoles(D1-D10)
  5.2.3. Procedure for the Synthesis of Alkyl and aryl Substituted 1, 3-Thiazoles(D1-D10)
  5.2.4. General procedure for the Synthesis of Alkyl and aryl Substituted 1, 3-Thiazoles(D1-D10)
  5.2.5. Isolation and characterization of product

5.3. Results and discussion
Chapter VI
In Silico And In Vitro Evaluation Of 1,3,4-Thiadiazole And 1,3-Thiazole Derivatives Against Anti-Cancer Disease

6.1 Introduction
   6.1.1. In-silico analysis of drugs
      6.1.1.1. Tyrosine- protein kinase ABL1
   6.1.2. Cytotoxicity
      6.1.2.1. MTT assay

6.2. Materials and Methods
   6.2.1. In-silico analysis of synthesized compounds
      6.2.1.1. Protein Preparation
      6.2.1.2. Preparation of Tyrosine- protein kinase ABL1
      6.2.1.3. High Throughput Virtual screening (HTVs)
      6.2.1.4. Structure based drug designing
   6.2.2. In vitro cytotoxicity assay
      6.2.2.1. Cell culture
      6.2.2.2. Method for passaging the cells
      6.2.2.3. Determination of mitochondrial synthesis by MTT assay

6.3. Results and Discussion
   6.3.1. In-silico analysis
   6.3.2. In vitro cell line analysis for 1,3,4-Thiadiazoles and 1,3-Thiadiazoles
      6.3.2.1. In-vitro cell viability studies of thiaidiazole
      6.3.2.2. In-vitro cell cytotoxicity studies of thiaidiazole
      6.3.2.3. In-vitro cell viability studies of 1,3-Thiazoles
      6.3.2.4. In-vitro cell cytotoxicity studies of 1,3-Thiazoles

6.4. Reference
6.5. Summary
6.6. Appendix