CONTENTS

CHAPTER I
INTRODUCTION

1.1 Introduction 1
1.2 Effects of sedimentation in estuarine environment 1
1.3 Coastal Zone 2
1.4 Status of Indian Coastal Environment: A Glance 3
1.5 Status of Tamil Nadu Coast 4
1.6 Estuaries 4
1.7 Mangroves 5
1.8 Mangroves of the world 6
1.9 Mangroves of India 6
1.10 Mangroves of Tamil Nadu 7
1.11 Ecological services 10
1.12 Location of the study area 10
 1.12.1 Muthupet 10
 1.12.2 Devipattinam 10
 1.12.3 Punnakayal 12
1.13 Drainage 12
 1.13.1 Cauvery River Basin 12
 1.13.2 Vaigai River Basin 12
 1.13.3 Thamirabarani River Basin 13
1.14 Physiography and Climate 13
 1.14.1 Muthupet 13
 1.14.2 Devipattinam and Punnakayal 13
1.15 Geological Settings 14
 1.15.1 Charnockites 15
 1.15.2 Granitoid gneiss 15
 1.15.3 Garnetiferous sillimanite gneiss 15
 1.15.4 Calc gneiss 15
1.15.5 Crystalline Limestone
1.15.6 Gondwana formation
1.15.7 Quartzites
1.15.8 Tertiary formations
1.15.9 Quaternary deposits

1.16 Methodology
1.16.1 Sampling of Sediment Cores
1.16.2 Determination of sand, silt and clay ratio
1.16.3 Determination of calcium carbonate
1.16.4 Determination of readily oxidizable organic matter
1.16.5 Scanning Electron Microscopic (SEM) Studies
1.16.6 Major Oxides
1.16.7 Trace Elements Geochemistry
1.16.8 Clay Mineralogy
1.16.9 \(^{14}\)C Dating

1.17 Scope of the Study

1.18 Objectives

CHAPTER II
REVIEW OF LITERATURE
2.1 Introduction
2.2 Status on Rate of Sedimentation Studies – International
2.3 Status on Rate of Sedimentation Studies in India
2.4 International Status on Paleoceanography
2.5 Status on Paleoceanographic studies in India
2.6 International status on Provenance and Paleoclimate
2.7 Status on Provenance and Paleoclimate Studies in India
2.7.1 Major elements
2.7.2 Trace elements
2.8 Sediment dynamics
2.9 Geochronology
CHAPTER III
CORE STRATIGRAPHY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Results and Summary</td>
<td>43</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Textural analysis</td>
<td>43</td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>MPT-1 Core</td>
<td>44</td>
</tr>
<tr>
<td>3.2.1.2</td>
<td>DPM-2 Core</td>
<td>48</td>
</tr>
<tr>
<td>3.2.1.3</td>
<td>PKL-4 Core</td>
<td>48</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Textural differentiation</td>
<td>52</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Calcium Carbonate %</td>
<td>56</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Organic Matter %</td>
<td>56</td>
</tr>
<tr>
<td>3.2.5</td>
<td>SEM Studies of Sand Grains</td>
<td>61</td>
</tr>
<tr>
<td>3.2.5.1</td>
<td>MPT-1 core</td>
<td>61</td>
</tr>
<tr>
<td>3.2.5.2</td>
<td>DPM-2 core</td>
<td>62</td>
</tr>
<tr>
<td>3.2.5.3</td>
<td>PKL-4 core</td>
<td>62</td>
</tr>
</tbody>
</table>

CHAPTER-IV
CLAY MINERALOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>69</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Kaolinite</td>
<td>70</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Smectite</td>
<td>70</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Illite</td>
<td>71</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Chlorite</td>
<td>71</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Origin and Formation of Clay Minerals</td>
<td>71</td>
</tr>
<tr>
<td>4.1.6</td>
<td>XRD analysis</td>
<td>72</td>
</tr>
<tr>
<td>4.2</td>
<td>Results</td>
<td>73</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Mineral analysis of MPT-1 Core (Powder sample)</td>
<td>73</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Mineral analysis of DPM-2 Core (Powder sample)</td>
<td>73</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Mineral analysis of PKL-4 Core (Powder sample)</td>
<td>74</td>
</tr>
</tbody>
</table>
CHAPTER V
GEOCHEMISTRY

5.1 Introduction 90
5.1.1 Sources of Metal Contaminants and Association in Sediments 92
5.2 Results and Discussion 93
5.2.1 Major Oxides and Normalization Values for MPT-1, DPM-2 and PKL-4 core sediments 93
5.2.1.1 SiO₂ % 98
5.2.1.2 Al₂O₃ % 99
5.2.1.4 Si/Al % 100
5.2.1.5 Fe₂O₃ % 100
5.2.1.6 Fe/Al % 103
5.2.1.7 CaO % 104
5.2.1.8 Ca/Al % 104
5.2.1.9 MgO % 105
5.2.1.10 Mg/Al % 109
5.2.1.11 Na₂O and K₂O % 111
5.2.1.12 Na/Al and K/Al % 111
5.2.1.13 TiO₂ % 112
5.2.1.14 Ti/Al % 115
5.2.1.15 P₂O₅ % 115
5.2.1.16 P /Al % 115
5.2.1.17 MnO % 119
5.2.1.18 Mn /Al % 119
5.2.2 Paleoweathering and Weathering Index (CIA and CIW values) for MPT-1, DPM-2 and PKL-4 cores 124
5.2.3 PIA diagram 125
5.2.4 Trace elements
 5.2.4.1 Chromium
 5.2.4.2 Nickel (Ni)
 5.2.4.3 Cobalt (Co)
 5.2.4.4 Zinc (Zn)
 5.2.4.5 Copper (Cu)
 5.2.4.6 Lead (Pb)
 5.2.4.7 Cadmium (Cd)

5.2.5 Sediment quality Analysis
 5.2.5.1 Enrichment factor (EF)
 5.2.5.2 Contamination factor
 5.2.5.3 Geoaccumulation Index (Igeo)

5.2.6 Correlation Matrix
 5.2.6.1 Correlation Matrix for MPT-1 core
 5.2.6.2 Correlation Matrix for DPM-2 core
 5.2.6.3 Correlation Matrix for PKL-4 core

5.2.7 Component plot in rotated space

5.3 Summary

CHAPTER VI
GEOCHRONOLOGY

6.1 Introduction
6.2 Results
 6.2.1 14C Analysis for MPT-1 and PKL-4 cores
 6.2.2 Rate of sedimentation
 6.2.3 Important Past Depositional Changes (IPDC)
 6.2.3.1 Muthupet (MPT-1 core)
 6.2.3.2 Punnakayal (PKL-4 core)

6.3 Summary
CHAPTER-VII

DISCUSSION AND CONCLUSION

7.1 Introduction 169
7.2 Inter correlation of three core samples (MPT-1, DPM-2 and PKL-4) 169
7.2.1 Textural observations and core stratigraphy 170
7.2.2 Clay mineralogical investigation 174
7.2.3 Geochemistry 175
 7.2.3.1 Provenance studies 176
 7.2.3.2 Weathering pattern 176
 7.2.3.3 Pollution status 176
7.2.4 Geochronological investigation 178
 7.2.4.1 Rate of sedimentation 178
 7.2.4.2 Important past Depositional changes (IPDC) 178
7.3 Conclusion 179
7.4 Recommendations 181

REFERENCES i - xxviii

APPENDIX - 1 (PUBLICATION)
APPENDIX - 2 (PUBLICATION)