CONTENTS

CHAPTER 1 INTRODUCTION

1.1 Types of Materials 1
 1.1.1 Single crystal 2
 1.1.2 Poly crystal 2
 1.1.3 Amorphous 4

1.2 Importance of single crystal 4

1.3 Nonlinear optics 9
 1.3.1 Origin of NLO 9
 1.3.2 Basic concepts 10
 1.3.3 Second Harmonic Generation 10
 1.3.4 Applications of NLO materials 12

1.4 The classification based on conductivity 13
 1.4.1 Significance of semiconductors 13
 1.4.2 Types of semiconductors 18
 1.4.3 Chalcogenides 18
 1.4.4 Applications 22

1.5 Rare earth chalcogenides 25
 1.5.1 Classification of semiconductors based on groups 25

1.6 Scope of the Thesis 27

CHAPTER 2 EXPERIMENTAL TECHNIQUES USED FOR THE PRESENT STUDY

2.1 Elemental analysis 30

2.2 Spectroscopy 30
2.2.1 UV-VIS
 2.2.1.1 Basic concepts 32
 2.2.1.2 Working principle 33

2.2.2 FTIR
 2.2.2.1 Basic concepts 36
 2.2.2.2 Working principle 37
 2.2.2.3 Sampling technique 41

2.2.3 Photoluminescence
 2.2.3.1 Basic concepts 41
 2.2.3.2 Working principle 42

2.2.4 EPR
 2.2.4.1 Basic concepts 45
 2.2.4.2 Experimental setup 46

2.3 X-ray analysis
 2.3.1 Basic concepts 48
 2.3.2 Angle Dispersive x-ray powder diffraction 50

2.4 Thermal analysis
 2.4.1 Thermogravimetric Analysis (TGA) 52
 2.4.1.1 Principle 52
 2.4.1.2 Instrumentation 54
 2.4.2 Differential Thermal Analysis (DTA) 56
 2.4.2.1 Principle 56
 2.4.2.2 Instrumentation 57
 2.4.3 Differential Scanning Calorimetry (DSC) 60
 2.4.3.1 Principle 60
 2.4.3.2 Instrumentation 62

Page No
- 2.2.1 UV-VIS 32
- 2.2.2 FTIR 36
- 2.2.3 Photoluminescence 41
- 2.2.4 EPR 45
- 2.3 X-ray analysis 48
- 2.4 Thermal analysis 52
2.5 Low Temperature Studies 64
 2.5.1 Low temperature Luminescence 64
 2.5.2 Low temperature Magnetic Susceptibilities 64

CHAPTER 3 EXPERIMENTAL STUDIES ON TRIS THIOUREA COPPER CHLORIDE (TTCC)

3.1 Synthesis and Crystal growth 70
3.2 Experimental Details 70
3.3 Results and Discussions 71
 3.3.1 CHNS analysis 71
 3.3.2 Atomic Absorption spectra 71
 3.3.3 Single Crystal XRD 73
 3.3.4 Powder XRD 73
 3.3.5 FTIR 76
 3.3.6 UV spectrum 79
 3.3.7 Low temperature PL spectra 81
 3.3.8 Stokes shift 84
 3.3.9 Thermal analysis 87
 3.3.10 EPR 91
 3.3.11 Low temperature magnetic susceptibility study 93

3.4 Conclusions 93
CHAPTER 4 STRUCTURAL, OPTICAL AND MAGNETIC STUDIES ON ZINC TRIS THIOUREA SULPHATE

4.1 Synthesis and Crystal growth 100
4.2 Experimental Details 102
4.3 Results and Discussions 103
 4.3.1 Synthesis 103
 4.3.2 Rietveld Refinement for XRD data 103
 4.3.2.1 GSAS 106
 4.3.2.2 JANA 106
 4.3.2.3 Electron Density Calculation 114
 4.3.3 UV-Vis Spectrum 119
 4.3.4 Low temperature PL Spectra 125
 4.3.5 Low temperature Magnetic Susceptibility study 130
 4.3.6 Conclusions 133

CHAPTER 5 THEORETICAL STUDY ON TRANSPORT PROPERTIES OF SOME III-V, IY-IV AND DIVALENT RARE EARTH CHALCOGENIDE SEMICONDUCTING COMPOUNDS

5.1 Theoretical Methodology 136
5.2 III-V and IV-IV compounds 138
 5.2.1 Results and Discussions 138
5.3 Rare earth chalcogenide 143
 5.3.1 Results and Discussions 143
5.4 Validity of the model 146
<table>
<thead>
<tr>
<th>CHAPTER 6 CONCLUSIONS</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Semiorganic TTCC crystal</td>
<td>149</td>
</tr>
<tr>
<td>6.2 Semiorganic ZTS crystal</td>
<td>152</td>
</tr>
<tr>
<td>6.3 Theoretical study</td>
<td>156</td>
</tr>
<tr>
<td>6.4 Future Scope of Thesis</td>
<td>158</td>
</tr>
</tbody>
</table>

REFERENCES 159
CURRICULUM VITAE 170
LIST OF PUBLICATIONS 171