Figure 1.1	a) Intensity profile of a focussed Gaussian beam (Longitudinal view), b) Intensity profile as a function of distance from beam axis (Transverse view). Intense regions are represented with dark shades.
Figure 1.2	The longitudinal beam profile of a collimated Gaussian beam, it explains the geometrical significance of Rayleigh range z_R.
Figure 1.3	a) Self focussing of Gaussian beam due to $n(I) > n_0$, b) Self defocusing of Gaussian beam due to $n(I) < n_0$.
Figure 1.4	Schematic representation of two-photon and three-photon absorption processes.
Figure 1.5	Schematic representation of excited state absorption
Figure 1.6	a) Common representation of an ordinary chain like polymer b) Two representations of the same polymer chain with the locations of the single and double bonds interchanged c) Representation of the charge distribution of a conjugated chainlike polymer as the superposition of both states
Figure 2.1	Schematic of Closed aperture Z-scan configuration showing the sample position and beam profile a) $n_2 > 0$, sample at $z<0$, b) $n_2 > 0$, sample at $z>0$, c) $n_2 < 0$, sample at $z<0$, d) $n_2 < 0$, sample at $z>0$.
Figure 2.2	a) Z-scan traces of purely nonlinear refractive materials. Dark lines for negative and dashed lines for positive nonlinear refraction. b) Closed aperture Z-scan trace when nonlinear refraction and nonlinear absorption coexists for a negative nonlinear material.
Figure 2.3	Z-scan open aperture trace of a) Positive nonlinear absorption b) Negative nonlinear absorption (Saturable Absorption).
Figure 2.4	Single beam Z-scan set up for the measurement of both nonlinear refraction and nonlinear absorption
Figure 2.5	Schematic representation of degenerate four wave mixing experiment. A) Forward geometry, B) Backward geometry.
Figure 2.6	Folded Boxcars beam geometry of the forward DFWM experiment
Figure 2.7	Degenerate Four Wave Mixing Experimental set up. The inset image shows a typical DFWM output with the narrow bright green patch, the phase conjugate signal
Figure 2.8	A typical plot of phase conjugate pulse intensity as a function of pump intensity in DFWM experiment
Figure 2.9	Typical transmittance feature of a passive optical limiter. b) Input-output feature of an ideal optical limiter.
Figure 2.10	a) Schematic representation of three-tier molecular energy level diagram, where S_0, S_1 and S_2 are respectively the ground, first and second excited states. b) Illustration of nonlinear response of a reverse saturable absorber.
Figure 2.11	a) Illustrating width $w(z)$ at different z-position of a focussed Gaussian beam. b) Showing relation between beam intensity versus transmittance of a typical optical limiter.
Figure 2.12	A) UV-Vis spectrophotometer used in present work, B) Schematic diagram of optic beam alignment in a double beam UV-Vis spectrophotometer
Figure 2.13 a) Abbe refractometer b) Schematic diagram of the optical system

Figure 2.14 Experimental set up for screening second order nonlinear optical materials in powder form

Figure 3.1 FTIR spectra of (a) CM-1, (b) CM-2, (c) CM-3, (d) CM-4, and (e) CM-5 taken with KBr disc method.

Figure 3.2 Two-Dimensional representation of molecular structures of coumarin derivatives

Figure 3.3 Linear absorption spectra of coumarine derivatives recorded in DMF solution. a) CM1, CM2 and CM3 b) CM4 and CM-5.

Figure 3.4 Tau plots of the Coumarin derivatives for computing molecular band gap. The observed band gaps are: CM-1(3.675eV), CM-2 (2.86eV), CM-3(2.80eV), CM-4 (2.81eV), and CM-5 (2.81eV). Sample solutions were prepared by dissolving in DMSO.

Figure 3.5 Open aperture Z-scan curves for the samples CM-1 to CM-5 at beam intensity \(I_0 = 1.7 \text{GW/cm}^2 \). The coloured lines are theoretical fitting curves using equation with \(\beta(x10^{-10} \text{m/W}) = 0.05, 2.45, 1.25, 1.50 \) and 0.51 for CM-1, CM-2, CM-3, CM-4 and CM-5 respectively. Linear transmittances (%) of the samples are respectively in the order of 95.25, 76.12, 81.76, 78.65, and 88.0 at an identical concentration of 0.40 % (m/v)

Figure 3.6 Open aperture data of CM-2 fitted to both pure 2PA (green) and SA+2PA (red) shows that absorption is best fittable with 2PA type of absorption mechanism.

Figure 3.7 Closed aperture Z-scan curves for the samples at beam intensity \(I_0 = 1.7 \text{GW/cm}^2 \). The coloured lines are the theoretical fit of the experimental data to equation with \(\Delta \phi_0 = 1.76, 1.86, 2.00 \) and 2.05 for CM-2, CM-3, CM-4 and CM-5 respectively.

Figure 3.8 Closed by open aperture Z-scan curves for the samples at beam intensity \(I_0 = 1.7 \text{GW/cm}^2 \). The coloured lines are the theoretical fit of the experimental data to equation with \(\Delta \phi_0 = 1.76, 1.86, 2.00 \) and 2.05 for CM-2, CM-3, CM-4 and CM-5 respectively.

Figure 3.9 Variation of effective nonlinear absorption coefficient (\(\beta_{eff} \)) with the on-axis input beam intensity \(I_0 \) in the samples CM-2, CM-3, CM-4 and CM-5.

Figure 3.10 a), b), c) Sample concentrations versus \(\beta \) plot of samples CM-2, CM-3 and CM-5 in DMF. d) Optical limiting curves of CM-2 at three different concentrations

Figure 3.11 Molecular Electrostatic Surface Potential mapping of compounds CM-1 to CM-5. Images given at the left hand side show the ESP mapping and the right side pictures show the corresponding optimized molecular configurations.

Figure 3.12 CM-2/ PMMA thin film

Figure 3.13 Optical limiting responses of coumarin compounds studied within the beam intensity range of \(1.5 \times 10^3 \) to 1GW/cm². Figure e) shows the merged responses of all compounds. Data of all samples were taken at a concentration of 0.4 % (m/v).

Figure 3.14 Lorentzian-Gaussian fitted Photoluminescence spectra of CM compounds dissolved in DMF.

Figure 4.1 FTIR spectra of indole compounds taken in KBr disc
Figure 4.2 Two dimensional representation of molecular structures of Indole based molecular systems 118
Figure 4.3 a) UV-Vis spectra of IND-1 and IND-2 in DMSO 119
Figure 4.4 Tauc plots of the indole- based oligomeric systems 120
Figure 4.5 Open aperture Z-scan traces of indole based molecules dissolved in DMSO. Merged trace shown at the bottom is a comparative plot. 121
Figure 4.6 Closed aperture Z-scan curves for the samples IND-1, IND-2, IND-3 and IND-4. Nonlinear phase shift $\Delta \Phi_0$ of the samples are respectively 0, 2.38, 2.23, 1, and 2.456. 125
Figure 4.7 Pure nonlinear refraction curves of samples IND-2, IND-3 and IND-4 showing peak-valley configuration at 0.83GW/cm2 beam intensity. 127
Figure 4.8 Input fluence (I_0) versus (β_{eff}) plot of compounds IND-2, IND-3 and IND-4 showing fall in the magnitude of effective two-photon absorption coefficient with increasing beam intensity. The data was taken at a concentration of 0.1(%m/v) for IND-2 and for other two compounds the concentration was set at 0.05(%m/v). 128
Figure 4.9 a) Concentration dependence of nonlinear absorption coefficient for IND-2 and IND-4, b) The open aperture Z-scan trace of IND-2 for different solute concentrations. 130
Figure 4.10 The plot (violet lines) explains the variation of β_{eff} with increasing proportions of GO. The variation of transmittance with increasing amount of graphene is shown with pink line. The optimized value of transmittance and nonlinear absorption coefficient is given by the intersecting point. The ‘PIN’ shown in the graph means IND-2. 131
Figure 4.11 UV-Vis absorption spectra of GO/IND-2 compositions. Spectra show the bathochromic shift of GO peak with increasing percentage of IND-2. 132
Figure 4.12 Open aperture z-scan plot of GO/IND-2 compositions taken at different mass percentage ratio 133
Figure 4.13 Schematic representation of possible charge transfer mechanism taking place in indole oligomeric systems. Electron mobilization path is shown with red curly arrows 135
Figure 4.14 Open aperture Z-scan traces of Indole derivatives with IND-2 and IND-3 doped in PMMA matrix. Plots are given for different beam intensities. 136
Figure 4.15 Optical power limiting characteristic curves of IND series of compounds 138
Figure 4.16 Deconvoluted photoluminescence spectra of indole (IND) derivatives 139
Figure 5.1 Trans-cis conformations of Azobenzene chromophore illustrating the effective inter-phenylic distance between the 4-4’ positions for both conformations. 148
Figure 5.2 FTIR spectra of Azopolyester-based compounds recorded in KBr disc where the peaks represent the characteristic absorption frequencies in the unit of wave number. 152
Figure 5.3 a) General structure of the monomeric unit, (b) Acid dye [AZ-1], (c) Azo diol [AZ-2], (d) Azo DEG [AZ-3], (e) Azo AP [AZ-4], (f) Azo OT [AZ-5], (g) Azo PVA-14(A) [AZ-6], (h) Azo PVA-14(B) [AZ-7] 153
Figure 5.4 UV-visible absorption spectra of AZ compounds illustrating relative variation in absorbance with reference to AZ-1, the title compound 154
Figure 5.5 Optical band gap plots of the azopolyester-based compounds. Band gap 156
values of the compounds are shown in the respective plot.

Figure 5.6 Open aperture Z-scan plots of azopolyester compounds taken in DMF at a concentration of 0.02 (% m/v).

Figure 5.7 Open aperture Z-scan trace of AZ-1 showing switching behaviour at off-focal points where sample shows SA and it suddenly switches back to RSA at the focal plane at an intensity of 1.1GW/cm². Red line describes the theoretical fit of the experimental data.

Figure 5.8 Closed aperture Z-scan traces of the samples at a beam intensity of 0.80 GW/cm².

Figure 5.9 Closed by open aperture Z-scan traces of the samples at a beam intensity of 0.8 GW/cm².

Figure 5.10 Graph showing on-axis beam intensity (I_0) versus NLA coefficient indicating a decreasing trend in NLA coefficient with increasing I_0.

Figure 5.11 Jablonski diagram showing both TPA and RSA. ESA indicates the excited state absorption. The dotted arrows indicate non-radiative internal conversion. Singlet (S) state electrons are in opposite spin orientation and Triplet (T) state electrons have identical spins.

Figure 5.12 Plot showing the variation of NLA coefficient with the concentration of solute molecules of AZ-5.

Figure 5.13 (a) Open aperture Z-scan trace of AZ-4/PMMA at a beam intensity of 0.80GW/cm², (b) Optical limiting trace of AZ-4/PMMA film, (c) Open aperture Z-scan trace of AZ-5/PMMA at beam intensities of 0.80GW/cm² and 1.7 GW/cm², (d) Optical limiting trace of AZ-5/PMMA film.

Figure 5.14 Nanosecond-pulsed optical limiting traces of the compounds AZ-1, 2, 3 and 4 in a 1mm thick quartz cuvette.

Figure 5.15 Nanosecond pulsed optical limiting of the compounds AZ-5, 6, 7 in a 1mm cuvette. The graph shown at the bottom (Right) provides a comparative scale of performance of all the samples with the highest given by AZ-5.

Figure 5.16 Deconvoluted photoluminescent spectra of AZ series of compounds AZ-1 to AZ-5 taken in DMF solvent.

Figure 5.17 Mass spectrum of AZ-4 and AZ-5 using MALDI-MS experiment. (Courtesy-BARC Mumbai)

Figure 6.1 Data points show the phase conjugate pulse energy as a function of pump pulse energy, as collected by degenerate four-wave mixing in CS₂ using 7ns frequency-doubled 532nm Nd:YAG laser. The data are fitted to a cubic equation of the form $y=Ax^3$. Fitting constant is shown in the plot.

Figure 6.2 The variation of DFWM signal with incident pump intensity I_{pump} for Coumarin-based compounds. (Sample concentration 0.4(%m/V) in DMF).

Figure 6.3 The variation of DFWM signal with third power of input pump intensity fitted for a cubic dependence for indole based compounds.

Figure 6.4 DFWM signal versus pump intensity for the Azopolyester based molecules.

Figure 6.5 Log-log scaled plot of DFWM signals for AZ-5 compounds showing a linear trace with a finite intercept on the ordinate with slope ~3.

Figure 7.1 Normalised open aperture Z-scan traces of CM-2 upon excitation with 800nm, 100fs pulses. Red and blue lines are theoretical fit for 2PA, 3PA respectively. For a concentration of 0.04(% m/v), the observed linear
transmittance is 88%.

Figure 7.2 Optical limiting plot of CM-2 at a linear transmittance of 88% with solute concentration of 0.04 (% m/v) in DMF. Both 2PA and 3PA fits are shown in figure.

Figure 7.3 Normalised open aperture Z-scan traces of PIN-2 upon femtosecond excitation with 800nm, 100fs pulses. Black circles represent experimental data. Red lines represent theoretical fit with SA+2PA absorption. Linear transmittance was 62% for a concentration of 0.05(% m/v).

Figure 7.4 Variation of normalized transmittance with input fluence of laser for PIN-2 at a linear transmittance of 62% and concentration of 0.05(% m/v).

Figure 7.5 Open aperture Z-scan plot of AZ-1 upon excitation with 800nm, 100fsec laser pulse excitation. Circles represent experimental data and red curve is the theoretical fit to the Equation (7.3)

Figure 7.6 Normalized open aperture Z-scan trace of AZ-5 at 800nm, 100fs pulse. Sample concentration: 0.02 (%m/v), Linear transmittance: 78%.

Figure 7.7 Optical limiting behaviour of AZ-5 under 800nm, 100fs laser pulses. Linear transmittance was 88% for a concentration of 0.04(% m/v).