APPENDIX – 1 RESEARCH QUESTIONNAIRE

Name of the Respondent:
Department:

Dear Respondent,

I am Ganesh R, Ph.D - research scholar from Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Kancheepuram pursuing research on the topic “A Study on applicability of Lean Tools and Techniques in Plant Maintenance function for Internal customer satisfaction” Pursuance of the above topic of research involves collection of both primary and secondary data which is purely for academic purpose and would be kept strictly confidential. I solicit your cooperation in this endeavor. For collecting the data, I have designed a questionnaire. I request your kind cooperation in filling up the questionnaire. Your valuable responses would help me a great deal in my research.

- Before you fill in the questionnaire, please fill the form on organization profile.

Thanks and Regards

Ganesh R
Mobile: +91 9620800015
Ph.D - Research Scholar
SCSVMV, Kancheepuram
E-mail: kamakodi1@gmail.com
Organization Profile

1. Name of the Organization: Flow serve India,

2. Address: White field, Bangalore. Karnataka

3. Year of establishment:

4. Total number of employees:

5. Awards and certifications received

Section - A

Based on your work experience with the maintenance team rate the questionnaire between Poor and Best in class (1 denotes “Poor” and 5 denotes “Best in Class”)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Description</th>
<th>Poor</th>
<th>Below Average</th>
<th>Average</th>
<th>Above Average</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maintenance team’s response to provide service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Maintenance team’s ability to provide quick service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Maintenance team member consider me equally during continuous improvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Equipment reliability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Service reliability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Spares Availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Based on your work experience with the maintenance team rate the questionnaire between strongly disagree and strongly agree (1 denotes “Strongly Disagree” and 5 denotes “Strongly agree”)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Description</th>
<th>Strongly disagree</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Maintenance team support in continuous improvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Maintenance team support in trial production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Maintenance Staff are polite and friendly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Maintenance Staff provide efficient service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Maintenance team member is in constant contact with me</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Maintenance team member supports me in my day to day activity issues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Preventive maintenance is scheduled in line with production planning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Planned maintenance is scheduled considering with the production planning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Preventive maintenance schedule is visually displayed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Breakdown trend is visually displayed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Service spares are kept in advance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>No equipment extended downtime because of spares</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Maintenance team trained me in the basic equipment maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Maintenance team helps me in equipment improvement activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Equipment will not fail immediately after Preventive Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Repeatability of the problem occurrences is lesser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Equipment is maintained at the basic condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>I can focus on day to day production activities without equipment failure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section – B

25. How long you are with the same organization? (In Years)

26. Age (Years)

27. Educational Status

28. Designation

29. Please specify the Lean tools and techniques practicing in your organization
 a.
 b.
 c.
 d.
<table>
<thead>
<tr>
<th>Scoring</th>
<th>Criterion</th>
</tr>
</thead>
</table>
| 1 | - Little required evidence is available;
 - A systematic approach to the basic purposes of the practice is just beginning;
 - Huge gaps exist in deployment, which inhibits progress in achieving the basic purposes of the practice |
| 2 | - Some required evidence is available;
 - A systematic approach to the basic purposes of the practice has been in use for some time;
 - Some areas are in the early stage of deployment |
| 3 | Much required evidence is available;
 - An approach is soundly based and systematic, which is responsive to the overall purposes of the practice;
 - The approach is developed, although deployment may vary in some areas |
| 4 | - All required evidence is available;
 - An approach is soundly based and systematic, which is responsive to the multiple requirements of the practice;
 - The approach is well deployed without significant gaps |
| 5 | - A sound, systematic approach, fully responsive to all the requirements of the practice is fully developed;
 - The approach is fully deployed without significant weaknesses in any area |
APPENDIX – 2 RELIABILITY STUDY

Item Analysis of SQ1, SQ2, SQ9, SQ10

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>SQ1</th>
<th>SQ2</th>
<th>SQ9</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQ2</td>
<td>0.987</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SQ9</td>
<td>0.972</td>
<td>0.967</td>
<td></td>
</tr>
<tr>
<td>SQ10</td>
<td>0.982</td>
<td>0.974</td>
<td>0.982</td>
</tr>
</tbody>
</table>

Cell Contents: Pearson correlation

Item and Total Statistics

<table>
<thead>
<tr>
<th>Total</th>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQ1</td>
<td>34</td>
<td>3.200</td>
<td>1.021</td>
<td></td>
</tr>
<tr>
<td>SQ2</td>
<td>34</td>
<td>3.203</td>
<td>1.009</td>
<td></td>
</tr>
<tr>
<td>SQ9</td>
<td>34</td>
<td>3.256</td>
<td>0.981</td>
<td></td>
</tr>
<tr>
<td>SQ10</td>
<td>34</td>
<td>3.185</td>
<td>0.972</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>12.844</td>
<td>3.949</td>
<td></td>
</tr>
</tbody>
</table>

Cronbach's Alpha = 0.9941

Item Analysis of RQ3, RQ11, RQ12

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>RQ3</th>
<th>RQ11</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ11</td>
<td>0.952</td>
<td></td>
</tr>
<tr>
<td>RQ12</td>
<td>0.958</td>
<td>0.990</td>
</tr>
</tbody>
</table>

Cell Contents: Pearson correlation

Item and Total Statistics

<table>
<thead>
<tr>
<th>Total</th>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ3</td>
<td>34</td>
<td>2.5882</td>
<td>1.3411</td>
<td></td>
</tr>
<tr>
<td>RQ11</td>
<td>34</td>
<td>2.6559</td>
<td>1.3538</td>
<td></td>
</tr>
<tr>
<td>RQ12</td>
<td>34</td>
<td>2.6500</td>
<td>1.3623</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>7.8941</td>
<td>4.0121</td>
<td></td>
</tr>
</tbody>
</table>

Cronbach's Alpha = 0.9887
Item Analysis of R4, R5

* NOTE * Calculating omitted item statistics requires more than 2 variables.

Correlation Matrix

Pearson correlation of R4 and R5 = 0.995

Item and Total Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>R4</td>
<td>34</td>
<td>2.4853</td>
<td>1.8466</td>
</tr>
<tr>
<td>R5</td>
<td>34</td>
<td>2.4588</td>
<td>1.8591</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>4.9441</td>
<td>3.7012</td>
</tr>
</tbody>
</table>

Cronbach's Alpha = 0.9976

Item Analysis of IC6, IC17, IC18

Correlation Matrix

IC6 IC17
IC17 0.977
IC18 0.965 0.980

Cell Contents: Pearson correlation

Item and Total Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC6</td>
<td>34</td>
<td>3.1029</td>
<td>1.1121</td>
</tr>
<tr>
<td>IC17</td>
<td>34</td>
<td>3.0206</td>
<td>1.1227</td>
</tr>
<tr>
<td>IC18</td>
<td>34</td>
<td>2.9853</td>
<td>1.1848</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>9.1088</td>
<td>3.3897</td>
</tr>
</tbody>
</table>

Cronbach's Alpha = 0.9907

Item Analysis of TWM7, TWM8, TWM19, TWM20

Correlation Matrix

TWM7 TWM8 TWM19
TWM8 0.986
TWM19 0.982 0.995
TWM20 0.991 0.983 0.984

Cell Contents: Pearson correlation
Item and Total Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWM7</td>
<td>34</td>
<td>2.732</td>
<td>1.636</td>
</tr>
<tr>
<td>TWM8</td>
<td>34</td>
<td>2.632</td>
<td>1.718</td>
</tr>
<tr>
<td>TWM19</td>
<td>34</td>
<td>2.612</td>
<td>1.745</td>
</tr>
<tr>
<td>TWM20</td>
<td>34</td>
<td>2.679</td>
<td>1.655</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>10.656</td>
<td>6.719</td>
</tr>
</tbody>
</table>

Cronbach's Alpha = 0.9964

Item Analysis of SS13, SS14

* NOTE * Calculating omitted item statistics requires more than 2 variables.

Correlation Matrix

Pearson correlation of SS13 and SS14 = 0.890

Item and Total Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS13</td>
<td>34</td>
<td>3.2000</td>
<td>1.1119</td>
</tr>
<tr>
<td>SS14</td>
<td>34</td>
<td>3.2441</td>
<td>0.9633</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>6.4441</td>
<td>2.0175</td>
</tr>
</tbody>
</table>

Cronbach's Alpha = 0.9365

Item Analysis of VM15, VM16

* NOTE * Calculating omitted item statistics requires more than 2 variables.

Correlation Matrix

Pearson correlation of VM15 and VM16 = 0.995

Item and Total Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM15</td>
<td>34</td>
<td>2.5206</td>
<td>1.9064</td>
</tr>
<tr>
<td>VM16</td>
<td>34</td>
<td>2.4118</td>
<td>1.9314</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>4.9324</td>
<td>3.8326</td>
</tr>
</tbody>
</table>

Cronbach's Alpha = 0.9973
Item Analysis of CQ21, CQ22, CQ23, CQ24

Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>CQ21</th>
<th>CQ22</th>
<th>CQ23</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ22</td>
<td>0.965</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CQ23</td>
<td>0.986</td>
<td>0.960</td>
<td></td>
</tr>
<tr>
<td>CQ24</td>
<td>0.960</td>
<td>0.991</td>
<td>0.961</td>
</tr>
</tbody>
</table>

Cell Contents: Pearson correlation

Item and Total Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ21</td>
<td>34</td>
<td>2.871</td>
<td>1.173</td>
</tr>
<tr>
<td>CQ22</td>
<td>34</td>
<td>2.715</td>
<td>1.361</td>
</tr>
<tr>
<td>CQ23</td>
<td>34</td>
<td>2.926</td>
<td>1.180</td>
</tr>
<tr>
<td>CQ24</td>
<td>34</td>
<td>2.703</td>
<td>1.386</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
<td>11.215</td>
<td>5.044</td>
</tr>
</tbody>
</table>

Cronbach's Alpha = 0.9905
APPENDIX – 3 TWO SAMPLE T-TEST

Two-Sample T-Test and CI: SQ L, SQ NL

Two-sample T for SQ L vs SQ NL

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQ L</td>
<td>34</td>
<td>4.162</td>
<td>0.371</td>
<td>0.045</td>
</tr>
<tr>
<td>SQ NL</td>
<td>34</td>
<td>2.397</td>
<td>0.493</td>
<td>0.060</td>
</tr>
</tbody>
</table>

Difference = mu (SQ L) - mu (SQ NL)
Estimate for difference: 1.7647
95% lower bound for difference: 1.6407
T-Test of difference = 0 (vs >): T-Value = 23.59 P-Value = 0.000 DF = 124

Two-Sample T-Test and CI: RQ - L, RQ - NL

Two-sample T for RQ - L vs RQ - NL

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQ - L</td>
<td>34</td>
<td>3.902</td>
<td>0.413</td>
<td>0.058</td>
</tr>
<tr>
<td>RQ - NL</td>
<td>34</td>
<td>1.294</td>
<td>0.460</td>
<td>0.064</td>
</tr>
</tbody>
</table>

Difference = mu (RQ - L) - mu (RQ - NL)
Estimate for difference: 2.6078
95% lower bound for difference: 2.4641
T-Test of difference = 0 (vs >): T-Value = 30.13 P-Value = 0.000 DF = 98

Two-Sample T-Test and CI: R - L, R - NL

Two-sample T for R - L vs R - NL

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>R - L</td>
<td>34</td>
<td>4.324</td>
<td>0.535</td>
<td>0.092</td>
</tr>
<tr>
<td>R - NL</td>
<td>34</td>
<td>1.176</td>
<td>0.387</td>
<td>0.066</td>
</tr>
</tbody>
</table>

Difference = mu (R - L) - mu (R - NL)
Estimate for difference: 3.147
95% lower bound for difference: 2.958
T-Test of difference = 0 (vs >): T-Value = 27.80 P-Value = 0.000 DF = 60

Two-Sample T-Test and CI: IC - L, IC - NL

Two-sample T for IC - L vs IC - NL

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC - L</td>
<td>34</td>
<td>4.196</td>
<td>0.401</td>
<td>0.056</td>
</tr>
</tbody>
</table>
IC - NL

34 2.098 0.300 0.042

Difference = mu (IC - L) - mu (IC - NL)
Estimate for difference: 2.0980
95% lower bound for difference: 1.9815
T-Test of difference = 0 (vs >): T-Value = 29.91 P-Value = 0.000 DF = 92

Two-Sample T-Test and CI: TWM - L, TWM - NL

Two-sample T for TWM - L vs TWM - NL

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWM - L</td>
<td>34</td>
<td>4.279</td>
<td>0.452</td>
<td>0.055</td>
</tr>
<tr>
<td>TWM - NL</td>
<td>34</td>
<td>1.088</td>
<td>0.286</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Difference = mu (TWM - L) - mu (TWM - NL)
Estimate for difference: 3.1912
95% lower bound for difference: 3.0836
T-Test of difference = 0 (vs >): T-Value = 49.21 P-Value = 0.000 DF = 113

Two-Sample T-Test and CI: SS - L, SS -NL

Two-sample T for SS - L vs SS - NL

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS - L</td>
<td>34</td>
<td>4.118</td>
<td>0.327</td>
<td>0.056</td>
</tr>
<tr>
<td>SS - NL</td>
<td>34</td>
<td>2.265</td>
<td>0.666</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Difference = mu (SS - L) - mu (SS -NL)
Estimate for difference: 1.853
95% lower bound for difference: 1.640
T-Test of difference = 0 (vs >): T-Value = 14.57 P-Value = 0.000 DF = 48

Two-Sample T-Test and CI: VM - L, VM - NL

Two-sample T for VM - L vs VM - NL

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM - L</td>
<td>34</td>
<td>4.382</td>
<td>0.493</td>
<td>0.085</td>
</tr>
<tr>
<td>VM - NL</td>
<td>34</td>
<td>1.059</td>
<td>0.239</td>
<td>0.041</td>
</tr>
</tbody>
</table>

Difference = mu (VM - L) - mu (VM - NL)
Estimate for difference: 3.3235
95% lower bound for difference: 3.1658
T-Test of difference = 0 (vs >): T-Value = 35.36 P-Value = 0.000 DF = 47
Two-Sample T-Test and CI: CQ - L, CQ - NL

Two-sample T for CQ - L vs CQ - NL

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ - L</td>
<td>34</td>
<td>4.029</td>
<td>0.170</td>
<td>0.021</td>
</tr>
<tr>
<td>CQ - NL</td>
<td>34</td>
<td>1.662</td>
<td>0.507</td>
<td>0.061</td>
</tr>
</tbody>
</table>

Difference = mu (CQ - L) - mu (CQ - NL)
Estimate for difference: 2.3676
95% lower bound for difference: 2.2597
T-Test of difference = 0 (vs >): T-Value = 36.51 P-Value = 0.000 DF = 81
Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: Material control

Using category names in Scale

<table>
<thead>
<tr>
<th>Category</th>
<th>Observed</th>
<th>Proportion</th>
<th>Expected</th>
<th>Contribution to Chi-Sq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practicing</td>
<td>15</td>
<td>0.5</td>
<td>8.5</td>
<td>4.97059</td>
</tr>
<tr>
<td>Not Practicing</td>
<td>2</td>
<td>0.5</td>
<td>8.5</td>
<td>4.97059</td>
</tr>
</tbody>
</table>

N DF Chi-Sq P-Value
17 1 9.94118 0.002

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: VSM

Using category names in Scale

<table>
<thead>
<tr>
<th>Category</th>
<th>Observed</th>
<th>Proportion</th>
<th>Expected</th>
<th>Contribution to Chi-Sq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practicing</td>
<td>16</td>
<td>0.5</td>
<td>8.5</td>
<td>6.61765</td>
</tr>
<tr>
<td>Not Practicing</td>
<td>1</td>
<td>0.5</td>
<td>8.5</td>
<td>6.61765</td>
</tr>
</tbody>
</table>

N DF Chi-Sq P-Value
17 1 13.2353 0.000

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: Heijunka

Using category names in Scale

<table>
<thead>
<tr>
<th>Category</th>
<th>Observed</th>
<th>Proportion</th>
<th>Expected</th>
<th>Contribution to Chi-Sq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practicing</td>
<td>17</td>
<td>0.5</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Not Practicing</td>
<td>0</td>
<td>0.5</td>
<td>8.5</td>
<td>8.5</td>
</tr>
</tbody>
</table>

N DF Chi-Sq P-Value
17 1 17 0.000
Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: Kaizen

Using category names in Scale

<table>
<thead>
<tr>
<th>Test</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Observed</td>
</tr>
<tr>
<td>Practicing</td>
<td>17</td>
</tr>
<tr>
<td>Not Practicing</td>
<td>0</td>
</tr>
</tbody>
</table>

N DF Chi-Sq P-Value
17 1 17 0.000

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: Visual Control

Using category names in Scale

<table>
<thead>
<tr>
<th>Test</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Observed</td>
</tr>
<tr>
<td>Practicing</td>
<td>15</td>
</tr>
<tr>
<td>Not Practicing</td>
<td>2</td>
</tr>
</tbody>
</table>

N DF Chi-Sq P-Value
17 1 9.94118 0.002

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: Waste Elimination

Using category names in Scale

<table>
<thead>
<tr>
<th>Test</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Observed</td>
</tr>
<tr>
<td>Practicing</td>
<td>8</td>
</tr>
<tr>
<td>Not Practicing</td>
<td>9</td>
</tr>
</tbody>
</table>

N DF Chi-Sq P-Value
17 1 0.0588235 0.808

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: Jidoka

Using category names in Scale

<table>
<thead>
<tr>
<th>Test</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Observed</td>
</tr>
<tr>
<td>Practicing</td>
<td>14</td>
</tr>
<tr>
<td>Not Practicing</td>
<td>3</td>
</tr>
</tbody>
</table>

N DF Chi-Sq P-Value
Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: TPM

Using category names in Scale

<table>
<thead>
<tr>
<th>Category</th>
<th>Observed</th>
<th>Proportion</th>
<th>Expected</th>
<th>Contribution to Chi-Sq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practicing</td>
<td>15</td>
<td>0.5</td>
<td>8.5</td>
<td>4.97059</td>
</tr>
<tr>
<td>Not Practicing</td>
<td>2</td>
<td>0.5</td>
<td>8.5</td>
<td>4.97059</td>
</tr>
</tbody>
</table>

N DF Chi-Sq P-Value
17 1 9.94118 0.002

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: Standardized work

Using category names in Scale

<table>
<thead>
<tr>
<th>Category</th>
<th>Observed</th>
<th>Proportion</th>
<th>Expected</th>
<th>Contribution to Chi-Sq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practicing</td>
<td>16</td>
<td>0.5</td>
<td>8.5</td>
<td>6.61765</td>
</tr>
<tr>
<td>Not Practicing</td>
<td>1</td>
<td>0.5</td>
<td>8.5</td>
<td>6.61765</td>
</tr>
</tbody>
</table>

N DF Chi-Sq P-Value
17 1 13.2353 0.000