LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Biopharmaceutics drug disposition classification system</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic depiction of liquid-solid system</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>HPLC chromatogram of standard CHE (2.5 µg/ml)</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>HPLC chromatogram of standard CHE (10 µg/ml)</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Calibration Curve of CHE for in vitro analysis</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>HPLC chromatogram of CHE product for in vitro analysis</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparative solubility profiles of CHE in different oils</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>Comparative solubility profiles of CHE in different surfactants</td>
<td>45</td>
</tr>
<tr>
<td>3.7</td>
<td>Schematic diagram of drug solubility in different co-surfactant’s</td>
<td>45</td>
</tr>
<tr>
<td>3.8</td>
<td>Ternary phase diagram of surfactant: co-surfactant ratio (1:1) and oily vehicle</td>
<td>47</td>
</tr>
<tr>
<td>3.9</td>
<td>Ternary phase diagram of surfactant: co-surfactant ratio (2:1) and oily vehicle</td>
<td>47</td>
</tr>
<tr>
<td>3.10</td>
<td>Ternary phase diagram of surfactant: co-surfactant ratio (3:1) and oily vehicle</td>
<td>47</td>
</tr>
<tr>
<td>3.11</td>
<td>Transmittance result of CHE LDS</td>
<td>49</td>
</tr>
<tr>
<td>3.12</td>
<td>Droplet size measurement for CHE LDS</td>
<td>50</td>
</tr>
<tr>
<td>3.13</td>
<td>Intensity of zeta potentials for CHE LDS</td>
<td>50</td>
</tr>
<tr>
<td>3.14</td>
<td>Comparison of drug release profile of CHE powder and LDS</td>
<td>52</td>
</tr>
<tr>
<td>3.15</td>
<td>Impact of adsorbent on powder properties (density values) for liquid-solid CHE</td>
<td>53</td>
</tr>
<tr>
<td>3.16</td>
<td>Impact of adsorbent on powder properties (angle of repose values) for liquid-solid CHE</td>
<td>54</td>
</tr>
<tr>
<td>3.17</td>
<td>Impact of glidant concentration on powder properties (density values) for liquid-solid CHE</td>
<td>55</td>
</tr>
</tbody>
</table>
3.18 Impact of glidant level on powder properties (angle of repose values) for liquid-solid CHE ... 55
3.19 Comparative chemical characterizations (drug content) for liquid-solid CHE .. 58
3.20 Drug release profile of test CHE liquid-solids against marketed samples .. 59
3.21 DSC thermogram for CHE plain drug & B9 CHE liquid-solids .. 60
3.22 SEM Photographs for (a) pure drug (b) Ran-Q 102 & (c) B9 CHE liquid-solids .. 61
3.23 TEM analysis of B9 CHE liquid-solids after reconstitution 61
3.24 Stability Chemical profile(drug content) of B9 CHE liquid-solids.. 63
3.25 Stability Chemical profile(drug release) of B9 CHE liquid-solids.. 63
3.26 HPLC chromatogram of plane plasma at 254 nm 64
3.27 HPLC chromatogram of plane plasma and CHE at 254 nm 64
3.28 CHE calibration curve in rat plasma by HPLC method 65
3.29 Pharmacokinetic profile for CHE liquid-solid & marketed product following their oral administration to rats 66
4.1 HPLC chromatogram of standard RML (1 µg/ml) 85
4.2 HPLC chromatogram of standard RML (20 µg/ml) 85
4.3 Calibration Curve of RML for in vitro analysis 86
4.4 HPLC chromatogram of RML Innovator product 87
4.5 Comparative solubility profiles of RML in different oils 89
4.6 Comparative solubility profiles of RML in different surfactants.... 90
4.7 Comparative solubility profiles of RML in different co-surfactants .. 90
4.8 Ternary phase diagram of surfactant: co-surfactant 1 ratio (1:1) and oily vehicle .. 91
4.9 Ternary phase diagram of surfactant: co-surfactant 1 ratio (2:1) and oily vehicle .. 91
4.10 Ternary phase diagram of surfactant: co-surfactant 1 ratio (3:1) 92
and oily vehicle………………………………………………………

4.11 Ternary phase diagram of surfactant: co-surfactant 2 ratio (1:1) and oily vehicle……………………………………………………… 92

4.12 Ternary phase diagram of surfactant: co-surfactant 2 ratio (2:1) and oily vehicle……………………………………………………… 93

4.13 Ternary phase diagram of surfactant: co-surfactant 2 ratio (3:1) and oily vehicle……………………………………………………… 93

4.14 Reference visual assessments of RML LDS formulations ……. 95

4.15 Droplet size and PDI graphs for formulations RML LDS…………. 96

4.16 Intensity of zeta potential for RML LDS………………………… 97

4.17 Differential scanning calorimetry (DSC) thermogram of (A)RML pain drug (B) innovator composition (C) test lipid formulation………………………………………………………… 98

4.18 Drug release profile of test RML LDS formulations against marketed samples……………………………………………………….. 99

4.19 Stability Chemical profile (drug content) of B2 RML LDS formulations……………………………………………………………. 101

4.20 Stability Chemical profile (drug release) of B2 RML LDS formulations…………………………………………………………….. 102

4.21 Droplet size and PDI graphs for RML LDS (1 month @ 40°C/75%RH)……………………………………………………………. 102

4.22 Droplet size and PDI graphs for RML LDS (3 month @ 40°C/75%RH)……………………………………………………………. 103

4.23 Intensity of zeta potential for RML LDS (1 month @ 40°C/75%RH) ………………………………………………………………. 103

4.24 Intensity of zeta potential for RML LDS (3 month @ 40°C/75%RH)……………………………………………………………. 103

4.25 Chromatogram of Plane Plasma and RML sample solution at 210nm……………………………………………………………. 104

4.26 Chromatogram of Plane Plasma sample solution at 210nm…….. 104

4.27 RML calibration curve in rat plasma by HPLC method………….. 104
4.28 Pharmacokinetic parameters for RML LDS formulation & marketed product following their oral administration to rats........ 105
5.1 HPLC chromatogram of standard AIN (2 µg/ml) 124
5.2 HPLC chromatogram of standard AIN (10 µg/ml) 125
5.3 Calibration Curve of AIN for in vitro analysis............... 125
5.4 HPLC chromatogram of AIN Innovator product for in vitro analysis.. 127
5.5 Comparative solubility profiles of AIN in different oils......... 129
5.6 Comparative solubility profiles of AIN in different surfactants...... 130
5.7 Compatibility Chemical profile (drug content) of AIN with LDS components... 131
5.8 Comparative release profiles of AIN test formulations (A, B & C) against innovator formulation.......................... 134
5.9 Comparative release profiles of AIN test formulations (D,E,F) against innovator formulation 135
5.10 Comparative release profiles of AIN test formulations (G,H,I) against innovator formulation 136
5.11 Comparative release profiles of AIN test formulations (J,K,L) against innovator formulation 138
5.12 Differential scanning calorimetry (DSC) thermogram of (A) alitretinoin pain drug (B) innovator composition (C) test lipid formulation... 139
5.13 Stability Chemical profile (drug content) of J,K,L formulations... 140
5.14 Stability Chemical profile (drug release) of J,K & L AIN formulations.. 141
5.15 Chromatogram of Plane Plasma sample solution at 347nm...... 142
5.16 Chromatogram of Plane Plasma and AIN sample solution at 347nm... 142
5.17 AIN calibration curve in rat plasma by HPLC method........ 143
5.18 Pharmacokinetic parameters for AIN & marketed product following their oral administration to rats.................. 145