Chapter 4

2nd best element rationalization with general domain

4.1 Introduction

In the previous chapter we discussed the case of second best element rationalization of a choice function with full domain, i.e., a choice function $C : \Sigma \mapsto \Sigma$. In this chapter we relax the domain restriction of the choice function. We allow the choice function to take the form $C : D \mapsto \Sigma$, where $\emptyset \neq D \subseteq \Sigma$. We try to find a necessary and sufficient condition for a choice function with general domain to be second best element rationalizable.

4.2 Notation and Definitions

Let D be a non-empty collection of non-empty subsets of X, i.e.,

$$\emptyset \neq D \subseteq 2^X - \{\emptyset\}.$$

Let a choice function C be defined over D.

$$C : D \mapsto \Sigma$$

such that $C(A) \subseteq A$ for all $A \in D$.

\[35\]
We define a set λ such that,

$$\lambda = \{ S \in D \mid C(S) \neq S \}.$$

For every set in λ choice set is a proper subset of the original set. So in every set in λ there is at least one element which does not belong to the choice set. Intuitively we can say that if the choice function is 2-rationalizable then these should be the sets which have a second best element.

We now define a function, $f : \lambda \rightarrow 2^X - \{\emptyset\}$ such that, for all $S \in \lambda$, $f(S) \subset S \land f(S) \cap C(S) = \emptyset$.

The idea behind the function f is simple and intuitive. If λ is the collection of sets with second best elements then the intended interpretation is that for any set S in λ, $f(S)$ is the collection of best elements in S.

We define the following sets:

$A_1 = \{ (x, y) \mid (\exists S \in \lambda)(x \in f(S) \land y \in C(S)) \}$

$A_2 = \{ (x, y) \mid (\exists S \in \lambda)(x \in C(S) \land y \in S - (C(S) \cup f(S))) \}$

$A_3 = \{ (x, y) \mid (\exists S \in D)(x, y \in C(S)) \}$

$A_4 = \{ (x, y) \mid (\exists S \in \lambda)(x, y \in f(S)) \}$

Given the intended interpretation of $f(S)$ it is clear that for any (x, y) that belongs to either in A_1 or A_2, we need x to be strictly preferred to y. Whereas, if (x, y) belongs to either A_3 or A_4 then we need x to be indifferent to y.

Let $A = A_1 \cup A_2 \cup A_3 \cup A_4$. Clearly A is a binary relation over X. Here we introduce two conditions:

Condition 1: $(x, y) \in A_1 \rightarrow (y, x) \not\in T(A)$

Condition 2: $(x, y) \in A_2 \rightarrow (y, x) \not\in T(A)$
Where $T(A)$ is the transitive closure of A. Condition 1 and condition 2 ensure T-consistency of the binary relation A. Clearly with these two conditions satisfied, $P(A) = A_1 \cup A_2$.

Let, $\Delta_X = \{(x,x) | x \in X\}$.
We define a binary relation \overline{Q} such that, $\overline{Q} = \Delta_X \cup T(A)$.
It can be easily verified that \overline{Q} is a quasi-ordering (i.e., reflexive and transitive). Let R be an ordering extension of \overline{Q}.

Claim: \overline{Q} is an extension of A.

Proof: It is straightforward that $(x,y) \in A$ implies $(x,y) \in \overline{Q}$. Suppose $(x,y) \in P(A)$.

$(x,y) \in P(A) \rightarrow (x,y) \in A_1 \lor (x,y) \in A_2$

$\rightarrow (y,x) \notin T(A)$

$\rightarrow (x,y) \in P[T(A)]$

$\rightarrow (x,y) \in P(\overline{Q})$

Hence \overline{Q} is an extension of A.

Therefore R is an ordering extension of A.

Axiom E: There exists a function $f : \lambda \mapsto 2^X - \{\emptyset\}$ satisfying conditions 1 and 2.

4.3 Necessary and sufficient condition for a choice function to be 2-rationalizable by an ordering

Theorem 4.1 There exists an ordering R which 2-rationalizes the choice function C iff it satisfies axiom E.

Proof: Suppose a choice function C satisfies axiom E. If $\lambda = \emptyset$ then for all
$S \in D$ we have $C(S) = S$. In that case $R = X^2$ is a 2-rationalization.

Now let $\lambda \neq \emptyset$.

Case 1: Let $C(S) = S$.

$C(S) = S \rightarrow (\forall x, y \in S)(xAy)$
$\rightarrow (\forall x, y \in S)(xRy)$
$\rightarrow G_1(S, R) = S$

Case 2: Let $C(S) \neq S$.

By construction we have $f(S) \neq \emptyset$. Let, $x \in C(S) \land y \in f(S)$. Clearly, $(y, x) \in P(A)$. As R is an extension of A it must be $yP(R)x$. Therefore, $x \notin G_1(S, R)$.

Suppose $x \notin G_2(S, R)$. Then for some $z \in S - G_1(S, R)$ we have zPx.

$zPx \rightarrow xRz$
$\rightarrow z \notin C(S) \land z \notin S - [C(S) \cup f(S)]$
$\rightarrow z \in f(S)$

$z \notin G_1(S, R)$ implies that for some w in S we have $wPz. w \notin f(S)$, as $z \in f(S)$. Also, $w \notin C(S)$ as wPx. Again, wPx implies $w \notin S - [C(S) \cup f(S)]$. Therefore, $w \notin S$ which is a contradiction.

Therefore $x \in G_2(S, R)$.

Now we prove the converse. Let $x \in G_2(S, R)$ and suppose $x \notin C(S)$.

Suppose $x \in f(S)$.

$x \in f(S) \rightarrow x \in G_1(S, R)$
$\rightarrow x \notin G_2(S, R)$

This is a contradiction. Therefore, $x \notin f(S)$.

$x \in S - [C(S) \cup f(S)]$
$\rightarrow \exists z \in f(S) \land \exists y \in C(S) \land (z, y) \in P(R) \land (y, x) \in P(R)$
$\rightarrow x \notin G_2(S, R)$

This is a contradiction and hence $x \in C(S)$.
Therefore $C(S) \neq S$ implies that $C(S) = G_2(S, R)$.

The necessary part of the theorem is trivial and comes straight from the intuitive interpretation that was given earlier. For every set S in λ, assign $f(S)$ as the collection of best elements in S and axiom E will be satisfied.