CHAPTER 2
LITERATURE REVIEW

2.1 INTRODUCTION

Image processing is a technique to change an image into digital form and execute some operations on it to obtain an enhanced image or to remove useful information from it. It is a kind of signal allowance where the input is image and output can be of image or characteristics linked with that image. Image denoising and segmentation are the two major problems in image processing. Existing variation models based upon Higher Order Derivatives (Variation-HOD) reduces the curvature of all level lines in the image. An efficient minimization algorithm based on graph cuts fails to have the exact relationship on gradient flow. The curvature based models do not fit directly to exploit the max flow computation into the framework. So, Intensity Histogram Equalization (IHE) method was designed to discover a diagrammatic representation for conquering the noise defects. IHE preprocess the image to remove the noise and enhance the image contrast for disparity enhancement and introduces intensity to improve the brightness. However, it is applied on single-band images with less functionality integrated with multi-class defined boundary images. Multi-Class Independent Component InfoMax Analysis (MICIA) is designed on multi-class high quality color images to improve the efficiency of segmentation.

MICIA joins the watershed cuts principle and Minimal Spanning Forest method for attaining the richer segmentation of color textures with minimal computational time and to evaluate the image at minimum time interval. Watershed Cuts Principle and Independent Component Analysis based on
InfoMax are used in MICIA. Watershed Cuts Principle with the regional minima of the map to handle multi-class poorly defined boundary images. Independent Component Analysis based on InfoMax achieves the richer segmentation of color textures with maximum likelihood function. The removal of edge point from image reduces the time taken for processing large sized images but contrast gets reduced while preserving the edges. To improve the contrasting on edge filtered images, Degeneration Threshold Image Detection (DTID) framework is presented. DTID framework imposes a Rapid Bilateral Filtering process for filtering edges of the contrast image. Rapid Bilateral Filtering handles high dynamic contrast images for smoothed edge preserving with minimal filtering time. Affine Planar Transformation is applied on the edge filtered contrast image in DTID framework to attain high quality of image being detected.

2.2 IMAGE DENOISING AND IMAGE CONTRASTING TECHNIQUES

Egil Bae et al. (2011) designed Graph Cuts for Curvature Based Image Denoising. Minimization of total variation (TV) is a rising method for image denoising. To solve the issues like stair casing results of the relatively simple TV model, variational models based upon higher order derivatives are designed. The Euler's elastica model is higher order model of central importance to reduce the curvature of all level lines in the image. Conventional numerical techniques for reducing the energy in the higher order models are difficult. An efficient minimization algorithm based upon graph cuts are planned for reducing the energy in the Euler's elastica model, by shortening the issues of explaining a series of simple graph representing issues. The series contains the links to the gradient flow of the energy function, and joins to a minimum point.

Franco Woolfe et al. (2011) planned Auto Fluorescence Removal by Non-Negative Matrix Factorization. A new understandable and fully automatic algorithm is designed for extraction of tissue Auto Fluorescence (AF) from
fluorescence microscopy images using non-negative matrix factorization. Spectral mixing models employs mixing coefficients to identify the fluorescence from each source takes place and unmixing algorithms divides the two fluorescent sources. Existing spectral unmixing methods for AF removal needs a priori knowledge of integrating the coefficients. It fails to create negative mixing coefficients which are not significant. Non-negative matrix factorization constrains mixing coefficients are non-negative and employed for spectral unmixing. However, it is not used for AF removal. A new non-negative matrix factorization algorithm divides fluorescent images into true signal and AF components exploits an calculation of the dark current.

Junbiao Pang et al. (2011) designed Transferring Boosted Detectors towards Viewpoint and Scene Adaptiveness. The differences rooted through the viewpoint and scene alter which designs an effective solution to the specific cases by changing the generic detectors and by considering the boosting style. A pretrained boosting-style detector instructs a priori knowledge with chosen features and weak classifier weighting. To serve, the chosen features are moved to the discriminative locations and balances to recompense for the possible exterior alterations. Furthermore, the weighting coefficients are adjusted with covariate boost that uses the corresponding training data to enhance the restricted instances.

Hien V Nguyen et al. (2013) explained the Design of Non-Linear Kernel Dictionaries for Object Recognition. Dictionary learning methods are designed for sparse and redundant signal demonstrations in a high dimensional feature space. By means of the kernel method, the recognized dictionary learning techniques like the method of optimal directions and KSVD are changed as non-linear. Kernel buildings and descriptions of their efficiency are attained on classification issues. Non-linear dictionary learning methods offers better
discrimination based on their linear counterparts and kernel PCA when the data is damaged by various kinds of degradations.

Camille Sutour et al. (2014) designed for difference techniques that contain exact over-smoothing and minimize the residual noise of NL-means by adaptive regularization. The regularized NL-means algorithm is connected to decrease the particular defaults value by an adaptive difference through nonlocal data fidelity term. It is modified to video denoising by calculating spatio-temporal NL-means is connected with spatio-temporal TV regularization. The regularized NL-means is based on TV regularization model is logically enlarge to other regularization terms for modifying different image priors. Further, the nonlocal denoising is used to reduce the other types of algorithms based on weighted averages that model appropriate to several other potential problems.

Bhagwati Charan Patel & Sinha (2015) planned for contrast of mammograms requires high-quality; hence the analysis of method provides perfect breast cancer images. The symptoms of breast cancer on mammography are indicated by mass tissues, micro-calcifications, skin thickening and architectural distortions of breast tissue. The contrast of mammograms is mixed with gray level clustering and contrast enhancement algorithm enlarges the contrast features and noise control. It supports the visual breast tumors of breasts of advanced density that assist the detection of breast cancer. The significant analysis with contrast improvement index, signal to noise ratio and root mean square error are used to investigate the characteristic of the breast cancer images. The features of contrast are decreased with lacking of presenting any artifacts. Utility techniques are created with Receiver Operating Characteristic (ROC) is not implemented in Computer-Aided Diagnosis (CAD) system.

Vijay Dhir & Sanjeev Kumar (2014) explained for the enhancement of different image contrast technique. Image Enhancement Techniques is
employed for attractive image contrast that offers the better image quality. Image contrast is mainly focus on the relative application of contrast enhancement methods with limited particular situation and global enhancement process. Also, the solution is identified for applying the global enhancement technique. It contains various fields including medical image analysis, remote sensing, HDTV and industrial X-ray image processing. The enhancement of image contrast is to make the images with lacking of side effects at the same time for continuing the input intensity. The region of image contract technique does not involve the implementation of 8-connected approach and concept of seed selection.

Aarti pareyani & Agya mishra (2015) described for the different algorithm is mainly depends upon the method of adaptive filtering. Weighted filter algorithm, Particle Swarm Optimization (PSO) algorithm, algorithm using hybrid combination of particle filter and wavelet, algorithm using combination of various techniques, local tone mapping algorithm and Non-Linear Adaptive (NLA) algorithm are discussed. The adaptive filter presents the improved algorithm compared to other techniques. Since Discrete Wavelet Transforms is the better method for denoising of image and input images looks the noise through image processing. As a result, for applying Discrete Wavelet Transform along with the above algorithm for decreasing the image contrast.

Yogesh Rao et al. (2015) explained for enhancing the image based on M band wavelets. The algorithm of image enhancement chooses the contrast enhancement using equalization techniques. Contrast enhancement is the essential issues in image enhancement method. A variation of luminance is reflected from two adjacent surfaces results in a high-quality contrast image in which the object is more detected from another objects in the background. Also, the fixed noise in the images is very low and denoising with conventional filters effect in the shape of images. The image enhancement algorithm is not
maintaining the high frequency edges and enlarges the contrast and produce a high image resolution. The different parameters such as MSE and PSNR are employed for comparing the maximum images generated with the current methods. The UI method is not planned to face the raw images and improve the images along with other utilities including automatic HTML report generation and saving log files.

2.2.1 Image Segmentation and Tone Mapping Method

Asheesh Kumar et al. (2014) planned Texture Segmentation in Medical Imaging for Red Spot Blotches Analysis in Human Body. In an Image, the type of regions is examined in segments through image texture. Color intensity in the image offers abnormal pattern of information regarding the image. Texture Interpretation explains the region for the texture of an image. Texture description of an image employed as a type of properties of an image for deciding the quality depending on the intensity of pixels in particular image. Texture Segmentation is a general idea for examining the image as it is rich in texture properties. Consequently, depending on the property pixels of image, analysis are performed using filters. The designed one objective is to examine the red spot blotches at human body derived from the properties of image.

Kasar et al. (2014) designed a Novel Framework for Image Segmentation with De-Over segmentation Technique. Image segmentation is a significant step in several image, video and computer vision applications. Many studies were carried out in generating various techniques and algorithms for image segmentation. However, it is complex to create exact segmentation than another, whether for a particular image or for group of images, or for entire class of images. This paper aims on segmentation technologies, Interactive Image Segmentation, Multichannel Pulse Coupled Neural Network and MDS based multi resolution. The segmentation methods are analyzed with parameters provides efficient outcome. However, it creates higher segmentation because of
the textured patterns of grassland and rough surface of rocks and creates noise in the image produced.

Xiaolin Wu (2011) planned Linear Programming Approach for Optimal Contrast-Tone Mapping. A new algorithmic technique of image enhancement through an optimal contrast-tone mapping was designed. In a basic removal from the existing performance of histogram equalization for contrast enhancement, the designed algorithmic technique increases the estimated contrast gain subject to a higher limit on tone distortion and possibly to other limitations which limits the artifacts. The basic contrast-tone optimization issues are explained effectively by linear programming. A new constrained optimization technique was designed for image enhancement which is common. The user includes and fine tunes the limitations to attain preferred visual effects.

Chalekar & Yengntiwar (2014) planned Image Contrast Enhancement by using Optimal Contrast–tone Mapping Method. A new image enhancement technique of optimal contrast tone mapping was designed. It describes calculation of contrast gain and tone distortion for gray level transfer functions. The explanation permit to leave from the existing performance of histogram equalization and devise contrast enhancement as an issues of maximizing contrast gain depending on a boundary on tone distortion and other limitations which repress the artifacts. Contrast-tone optimization issues are managed effectively by linear programming. The restrained optimization framework for contrast improvement is a frequent one. The user inserts and alters the limitations to attain required visual effects.

2.2.2 Arnold Transform and Bayesian Theorem

Manisha Boora & Monika Gambhir (2013) designed Arnold Transform Based Steganography. Steganography develops the utilization of host data to hide information. So, it is invisible to human observer. The key goal of
steganography is robustness, high payload, and imperceptibility. Digital images, videos, sound files, and other computer files are employed as transporter to insert the information. The designed technique manages the digital gray scale digital images, and designs a safe steganography scheme for hiding a larger size secret-image into smaller size cover-image. Arnold Transformation is carried out to attain mixed secret image. Discrete Wavelet Transform (DWT) is carried out on both host/cover image and secret image/information which is tracked by alpha blending operation.

Zhenjun Tang & Xianquan Zhang (2011) explained Secure Image Encryption without Size Limitation using Arnold Transform and Random Strategies. Encryption is a capable method to preserve the contents of digital media. Arnold transform is an important method of image encryption, however contains weaknesses in security and applications to images of all size. To overcome the issues, an image encryption scheme using Arnold transform and random strategies were designed. It is attained by separating the image into random overlapping square blocks, creating the random iterative numbers and random encryption order, and scrambling pixels of all block by means of Arnold transform. It does not contain any size restriction representing the application to any size images.

Yun-Fu Liu et al. (2011) designed Inverse Halftoning based on the Bayesian Theorem. A technique is designed that creates high quality inverse halftone images from halftone images. The technique was used earlier to any signal processing over halftone image or the inverse halftoning employed in JBIG2. The designed technique uses the Least-Mean-Square (LMS) algorithm to create a connection between the existing processing position and its equivalent adjacent locations in halftone image with direct binary search, error diffusion, dot diffusion, and ordered dithering. A positioned region named as a Support Region (SR) which is employed to remove features. The SR is attained using
relabeling the LMS-trained filters with their significance. Additionally, the possibility of black pixel existence is taken as a feature. Depending on the feature, the possibilities of feasible gray-scale values at the current processing position are attained using Bayesian theorem.

2.2.3 Applications of Image Enhancement

Hualiang Zhuang et al. (2012) designed Multichannel Pulse-Coupled-Neural-Network-Based Color Image Segmentation for Object Detection. A Pulse-Coupled Neural Network (PCNN) was introduced with Multichannel (MPCNN) connecting and supplying fields for color image segmentation. Not like the conventional PCNN, pulse-based radial basis function units are planned into the model neurons of PCNN to decide the fast connections between neurons regarding their spectral feature vectors and spatial proximity. The calculation of the color image segmentation is employed in parallel on a field-programmable-gate-array chip and the performance of segmentations is connected to an object-detection scheme.

Qing Wang et al. (2012) planned Transferring Visual Prior for Online Object Tracking. An algorithm was designed for moving visual prior learned offline for online object tracking. From a group of real-world images, an over complete dictionary is considered to denote a visual prior. The previous information of objects is general, and the training image set fails to have examination of the target object. In the tracking process, visual prior is moved to build an object demonstration by sparse coding and multi scale max pooling. Based on this demonstration, a linear classifier is studied online to differentiate the objective from the environment and to report for the goal and environment appearance variations over time. Tracking takes place inside a Bayesian Inference Framework where the learned classifier is employed to build the observation model and a particle filter is employed to calculate the tracking outcomes successively.
Antonios Oikonomopoulos et al. (2011) designed Spatiotemporal Localization and Categorization of Human Actions in Unsegmented Image Sequences. The issues of localization and identification of human actions in unsegmented image sequences were addressed. The aim of the designed system is to employ an implicit demonstration of the spatiotemporal shape of the activity depending on the Spatiotemporal Localization of characteristic grouping of feature descriptors. Verification for the Spatiotemporal Localization of the activity is collected in a probabilistic spatiotemporal voting system. The character of the voting framework permits to manage multiple activities happening in the same scene, existence of clutter and occlusion. Boosting is employed to choose characteristic groups per class. It results in a group of class definite codebooks in which each code word is a collection of features. Mean Shift mode estimation in the voting space offers the possible hypothesis regarding the localization of the subjects at all frame and expanding of the activities represented in the image sequence.

Ran He et al. (2011) designed Robust Principal Component Analysis based on Maximum Correntropy Criterion. A new rotational-invariant PCA depending on the Maximum Correntropy Criterion (MCC) is explained. A half-quadratic optimization algorithm is implemented to calculate the correntropy idea. In all iteration, the difficult optimization problem is minimized to a quadratic problem which effectively explained using standard optimization method. The designed techniques contain the advantages such as robust to outliers through the mechanism of MCC are more theoretically solid than a heuristic rule depending on MSE. It also fails to need assumption about the zero-mean of data for processing and calculate the data mean during optimization and optimal solution comprises principal eigenvectors of a robust covariance matrix similar to the largest eigenvalues. Kernel techniques are explained to manage nonlinearly distributed data.
Jason D Mc Ewen et al. (2013) planned sparse image reconstruction on the sphere: implications of a new sampling theorem. The drawbacks of sampling theorems on the reliability of sparse image reconstruction on the sphere were planned. Drop in the number of samples needs to symbolize all information content of a band-limited signal acts to enhance the reliability of sparse image reconstruction via both the dimensionality and sparsity of signals. An easy in painting issue on sphere is taken and images sparse in the magnitude of gradient measured. Total Variation (TV) in painting on the sphere with fast methods are designed to provide the in painting difficulty possible at high-resolution. A new sampling theorem on the sphere was extended by minimizing the essential number of samples by a factor of two for equiangular sampling scheme.

Koray Kayabol & Josiane Zerubia. (2013) explained Unsupervised amplitude and texture classification of SAR images with multinomial latent model. Amplitude and texture statistics of the synthetic aperture radar images are joined for the function of model-based classification. In a finite mixture model, Nakagami densities are used to model the class amplitudes and a 2-D auto-regressive texture model with t-distributed regression error to model the textures of the classes. A non-stationary multinomial logistic latent class label model is utilized as mixture density to attain smooth class segments. The classification expectation-maximization algorithm is obtained to calculate the class parameters and to categorize the pixels.

Pushpa Devi Patel et al. (2014) designed for image enhancement process for providing high quality of image. Contrast enhancement is the difficult and attractive regions of image processing. The concert framework of contrast enhancement algorithm is subjective by means of objective. The several algorithms of fuzzy image enhancements that map the elements from image pixel plane to fuzzy plane. The nonlinear membership function of fuzzy set is
employed for the problem of improved over and under enhancement of images. The algorithm of various fuzzy image enhancements, which design the elements from pixel plane to fuzzy plane and converted plane with fuzzy systems are not offers the better approach.

Hulin Kuang et al. (2016) planned for the Region of Interest (ROI) extraction method combines to identify the vehicle light, object proposals together and nighttime image enhancement. An improved Multi-Scale Retinex (MSR) approach is supported for removing the exact ROIs and enhances the images for nighttime vehicle detection. In addition, the dataset of modified nighttime vehicle is increased. The nighttime image enhancement, score-level multi-feature fusion and ROI removal method are all efficient for nighttime vehicle detection. The technique of nighttime vehicle is addressed to identify blurred and partly occluded vehicles, while the vehicles in a range of sizes, numbers, locations and backgrounds. The development of novel ROI extraction and deep learning is deal with the performance of detection is minimized.

2.2.4 Various Approaches and Techniques in Image Contrasting

Olivier Bernard et al. (2009) designed Variational B-Spline Level-Set: A Linear Filtering Approach for Fast Deformable Model Evolution. In image segmentation, level-set-based active-contour approaches have benefits of a discrete demonstration of the linked implicit function. Various formulations are designed where the implicit function are formed as a continuous parametric function stated on a B-Spline basis. From active-contour energy functional, formulation permits to calculate the answers as a limitation of the variational issues on the space extended by the B-Splines. Lastly, the minimization of the functional is attained using the B-Spline coefficients and all steps of the minimization are stated through a convolution operation. As the B-Spline functions are divisible, the convolution is executed as a series of simple 1-D
convolutions. Additionally, all steps of the level-set evolution are construed as a filtering operation with a B-Spline kernel.

Lihong Cui & Wenguo Li (2011) planned Adaptive Multi Wavelet-Based Watermarking through JPW Masking. A multi bit, multiplicative, spread spectrum watermarking by means of the discrete multi wavelet transform was designed. Existing algorithm is attained using a new Just Perceptual Weighting (JPW) model. The new model includes many masking causes of human visual observation by considering the eye's sensitivity to noise alterations based on spatial frequency, luminance and texture of all image sub-bands. Opposite to the conventional JND threshold model, JPW defines minimum perceptual sensitivity weighting to noise alterations fitter for non-additive watermarking. Particularly, watermarking strength is changed to attain minimum perceptual distortion by using the JPW model. Also, an adaptive optimum decoding is obtained by means of a statistic model depending on Generalized-Gaussian Distribution (GGD) for multi wavelet coefficients of the cover-image.

Yicong Zhou et al. (2013) planned Image Encryption using a New Parametric Switching Chaotic System. An Innovative Parametric Switching Chaotic System (PSCS) and its equivalent changes were designed for image encryption. The designed PSCS contains easy structure and combines the Logistic, Sine and Tent maps into one system. The PSCS displays common properties with the Sine and Tent maps for particular cases. It contains difficult chaotic actions. A novel image encryption algorithm is designed by means of the PSCS and with its transforms.

Horng-Horng Lin et al. (2011) planned Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling. Gaussian Mixture Modeling (GMM) is an accepted selection to form a scene for background subtraction for its ability of alteration to background
alterations. But, GMM frequently experiences a tradeoff between robustness to background modifications and sensitivity to foreground defects as well as ineffective in controlling the tradeoff for many situations. By analyzing the formulations of GMM, a tradeoff was managed by adaptive alterations of the GMM's learning rates for image pixels at various locations and of dissimilar properties. A new rate control scheme depending on high-level feedback is designed to offer regularization of adaptation for GMM and to facilitate determination of the tradeoff. In addition, to control the lighting variations which alters fast are fixed by GMM, a heuristic rooting in frame difference is designed to help the rate control scheme for minimizing the false foreground alarms.

Jianping Fan et al. (2011) planned Structured Max-Margin Learning for Inter-Related Classifier Training and Multi Label Image Annotation. A structured max-margin learning algorithm was designed to attain efficient training of a many number of inter-related classifiers for multi label image annotation application. To control multi label images for classifier training, image is divided into a set of image cases and an automatic instance label identification algorithm was designed to allocate multiple labels to the most significant image cases. A K-way min-max cut algorithm was designed for automatic instance clustering and kernel weight determination in which multiple base kernels are faultlessly joined to manage the issue of huge intra-concept visual diversity. Then, the visual concept network was designed to find out the inter-related learning tasks straightly in feature space than in label space. Feature space is general space for classifier training and image classification. Lastly, a parallel computing platform was designed to attain efficient learning of a large number of inter-related classifiers over the visual concept network.

2.2.5 Image Enhancement in Fingerprint

Josef Strom Bartunek et al. (2013) explained Adaptive Fingerprint Image Enhancement with Emphasis on Pre-processing of Data. Many
developments were performed to an adaptive fingerprint enhancement method depending on the contextual filtering. The word adaptive denotes the parameters of the technique which were mechanically regulated depending on the input fingerprint image. Five processing blocks contain the adaptive fingerprint improvement method, where four blocks are modernized. In preprocessing and local analysis blocks, a nonlinear dynamic range change method is employed. In the total examination and matched filtering blocks, different forms of order statistical filters are used. The processing blocks produce an enhanced and adaptive fingerprint image processing method.

Rohan Nimkar & Agya Mishra (2014) planned Fingerprint Segmentation based on Adaptive and Orientation Algorithm. Fingerprint image segmentation is a branch of pre-processing in fingerprint image recognition system. It contains significant cause to the fingerprint image recognition system. In the area of wide ranging of image segmentation, it is a demanding task. A new image decomposition scheme named Adaptive and Orientation algorithm is designed to attain efficient segmentation for fingerprint images. The designed technique is motivated by total variation models. However, it distinguishes by combining two unique features of fingerprints called scale and orientation. Adaptive and Orientation algorithm decays a fingerprint image into two layers called cartoon and texture. The cartoon layer has unnecessary components and texture layer contains the latent finger.

Arunalatha et al. (2015) is designed for Fingerprint Image Verification Using Dictionary Learning Technique (FIVDL). FIDVL Technique is used to increase the act the lesser quality fingerprints and dictionary learning method to minimize the time complexity with block processing rather than pixel processing. The dynamic range of an image is familiar with Successive Mean Quantization Transform (SMQT) method and frequency domain noise is to decrease the equalization of histogram spectral frequency. Next, the alteration of
adaptive nonlinear dynamic range is employed for verifying the local spectral features on equivalent fingerprint ridge frequency and orientation. The dictionary is created with spatial essential frequency that resolves from spectral features. In the FIDVL method, it does not analysis the latent fingerprints.

Mohammad AU Khan et al. (2016) are addressed for fingerprint classification problem and significant progress through designing Automatic Fingerprint Identification Systems (AFIS) approach. The important step of fingerprint enhancement is used to collect the digital fingerprint images are hardly perfect quality for AFIS technique. Fingerprint enhancement of current methods like Gabor and anisotropic filter, but lack of essential ability to tackle the scar lines. The AFIS method is employed to build the Fourier domain directional field to copy a suitable candidate for replaced scar pixels. Therefore, the AFIS method is used to maximize the performance of synthetic and real fingerprints for concerning better extraction of genuine minutia points. Finally, the characteristic of Curved Gabor Filtering Approach is connected with high computational problem. In addition, the selection of image features contains lesser intensity than scar regions for extracting the binary mask with suitable threshold.

2.2.6 Image Blur Assessment

Ming-Jun Chen & Alan C Bovik (2011) designed No-reference image blur assessment using multi scale gradient. The growing challenges of consumer video applications are represented using cell phone and low-cost digital cameras contain higher interest in objective image and video Quality Assessment (QA) algorithms. No-reference image and video blur evaluation are aimed. Natural scenes statistics models joined with multi-resolution decomposition methods to remove dependable features for QA. The algorithm contains three steps. Initially, a probabilistic Support Vector Machine (SVM) is used as a rough image quality assessor. Secondly, detail image is employed to process the blur
measurements. Lastly, the blur information is joined to forecast the blur quality of images. The algorithm is experienced on the LIVE Image Quality Database and the Real Blur Image Database.

Alexandre Ciancio et al. (2011) presented No-Reference Blur Assessment of Digital Pictures Based on Multi Feature Classifiers. The issues of no-reference quality evaluation are considered for digital pictures damaged with blur. Initially, creation of a large real image database including the pictures is used by human users in many applications. The transfer of biased tests used to create the ground truth linked with images. Depending on the ground truth, number of high quality pictures chosen which unnaturally corrupts them with various intensities of simulated blur. The results of modern techniques are used for no-reference blur quantification in various blurring scenarios and designed a new method for blur evaluation. An efficient method is tracked by joining various metrics and low-level image features. The model is tested by planning a no-reference quality evaluation algorithm for blurred images that joins various metrics in a classifier depending on a neural network structure.

Emna Chebbi et al. (2012) designed Image Quality Assessment based on Perceptual Blur Metric. Growth of digital image acquisition technologies results in the improved image quality using spatial resolution and sensitivity. Image quality is a feature of an image which calculates the recognized image degradation. Many methods and metrics are designed that are categorized as Full-Reference (FR) method, No-Reference (NR) method and Reduced Reference (RR) method. In image quality assessment area, it is significant to have researches on the physiology and psychology of human visual system. But, it is clear that strong connection between the outcomes and human visual perception is important. A new method for image quality assessment joins the perceptual blur metric and the index of Structural Similarity (SSIM) for enhancing the image quality quantification.
2.3 SEGMENTATION ON COLOUR TEXTURE IMAGES

Bo Peng et al. (2011) planned Automatic Image Segmentation by Dynamic Region Merging. The automatic image segmentation issues in a region merging method were designed. With over segmented image, several regions with homogeneous colour were identified. Image segmentation was achieved through successively joining the regions based on a statistical test. The two fundamental problems in a region-merging algorithm were given by order of joining and the stopping principle. In the designed algorithm, the two problems were answered using new predicate described using the sequential possibility ratio test and the minimum cost principle. From over segmented image, adjacent regions are combined if there was any authentication for connection depending on the predicate. The merging order tracks the principle of dynamic programming. This creates the image segmentation as an inference issue, in which the final segmentation was launched depending on the observed image. Besides, faster algorithm was designed to speed up the region-merging process that preserves a nearest neighbor graph in the iteration.

Prakash P Gajjar & Manjunath V Joshi (2010) implemented New Learning Based Super-Resolution: Use of DWT and IGMRF Prior. A New learning-based technique was designed for super-resolving an image collected at low spatial resolution. The low spatial resolution test image and a database comprising low and high spatial resolution images which attains super-resolution for the test image. An initial high-resolution (HR) approximation was designed by learning the high-frequency from the existing database. A new Discrete Wavelet Transform (DWT) based technique is designed for learning which employs a set of low-resolution (LR) images and equivalent HR versions. The LR image is formed as aliased and noisy version of the equivalent HR image, and the aliasing matrix entries are calculated using the test image and the initial HR calculation. A Maximum a Posteriori (MAP) evaluation is employed to
Zhile Ren & Shakhnarovich (2013) described Image Segmentation by Cascaded Region Agglomeration. A hierarchical segmentation algorithm initiates with fine over segmentation and slowly joins the regions by means of a cascade of boundary classifiers. The technique permits the weights of region and boundary features to adjust to the segmentation scale which is used. The steps of the cascade are instructed with asymmetric loss in sequence, to exploit boundary recall. On six segmentation data sets, the algorithm attains the enhanced results in many region-quality measures, and with less number of segments. The algorithm is extremely insistent in a dense over segmentation system under boundary-based measures.

2.3.1 Various techniques and Methods of Image Segmentation

Hernani Goncalves et al. (2011) designed HAIRIS: A Method for Automatic Image Registration Through Histogram-Based Image Segmentation. An automatic image registration through Histogram-Based Image Segmentation (HAIRIS) was designed. The new technique comprises in joining various segmentations of the pair of images are to be recorded consistent with a relaxation parameter on the histogram modes delineation. It is tracked by a reliable characterization of the removed objects-through the object area, ratio between the axis of the ellipse, perimeter and fractal dimension-and a robust statistical based procedure for objects matching. The purpose of the designed technique was explained to suggest rotation and translation. The initial dataset contained in a photograph as well as rotated and shifted version of the same photograph consistent with various levels of additional noise.

Sharifah Lailee Syed Abdullaha et al. (2012) implemented Segmentation of Natural Images Using an Improved Thresholding-based
Technique. The essential issues in image segmentation by means of traditional segmentation methods and designed an enhanced method for dividing images captured. Image segmentation denotes the method of dividing a digital image into many regions with the goal to remove the object of interest. An enhanced thresholding-based segmentation integrated with an inverse technique (TsTN) divides the natural images. The three segmentation methods are designed on fruit images and the results are calculated depending on the ground truth. The segmentation methods are compared by means of estimation technique called Rand Index (RI). TsTN contains the capability to generate good quality partitioned images.

Salima Ouadfel & Souham Meshoul (2012) planned Handling Fuzzy Image Clustering with a Modified ABC Algorithm. Image segmentation is a clustering task in which the image is divided into clusters. Pixels inside the same cluster are homogenous as probable one. Pixels exists in various clusters fails to be same in suitable similarity measure. Many clustering techniques were designed for image segmentation using Fuzzy C-Means clustering algorithm. Artificial Bees Colony algorithm is a population-based optimization technique which is employed in difficult issues. A new fuzzy clustering algorithm depending on modified Artificial Bees Colony algorithm is motivated to enhance the development process.

Michael T McCann et al. (2014) planned Images as Occlusions of Textures: A Framework for Segmentation. A numerical and algorithmic framework is introduced for unsupervised image segmentation. It is a significant step in a large range of image processing applications. Many existing segmentation techniques fails to perform well on histopathology images that encouraged examining segmentation of a broader class of images lacking clear edges between the regions which are to be partitioned. These images are
designed as occlusions of random images called textures, and displays local histograms of constructive tool for segmenting.

Prabhishek Singh & Ramneet Singh Chadha (2013) designed a Novel Approach to Image Segmentation. An application like image recognition, compression and watermarking it is ineffective and not able to develop the entire image. It is essential to partition the image before identifying, reducing or inserting watermark. For various image segmentation techniques, it is easy to divide the image for altering the illustration of the image or to reduce the image for making it important and simple to analyze. Image segmentation is the method of dividing an image into multiple partitions. A new technique was designed to image segmentation by achieving several steps over the edges identified by the objects. The technique was supportive in digital image watermarking application for effective embedding of watermark.

Pedram Ghamisi et al. (2012) planned an efficient method for segmentation of images based on fractional calculus and natural selection. Image segmentation is used in document image analysis for removal of printed characters, map processing to locate lines, legends, and characters, and topological features removal. In image analysis, the effective segmentation of images into significant objects is significant for categorization and object identification. Two new techniques were designed for segmentation of images depending on the Fractional-Order Darwinian Particle Swarm Optimization (FODPSO) and Darwinian Particle Swarm Optimization (DPSO) for deciding the n-1 optimal n-level threshold on a specified image. The effectiveness of the designed techniques is compared with other famous thresholding segmentation techniques.

Caiming Zhong et al. (2011) planned minimum spanning tree based split-and-merge: A hierarchical clustering method. Many clustering algorithms
turn into an inefficient when offered with inappropriate parameters or linked with the datasets containing of clusters with dissimilar shapes, sizes, and densities. To reduce the shortage, a novel split-and-merge hierarchical clustering method is designed where a Minimum Spanning Tree (MST) and an MST-based graph are used to direct the splitting and merging process. In the splitting process, vertices with high degrees in the MST-based graph are selected as initial prototypes, and K-means is used to divide the dataset. In the merging process, subgroup pairs are taken out and only neighboring pairs are utilized for merge.

Cruz-Aceves et al. (2013) explained for automatic image segmentation that supports the active contour method and evaluation of distribution algorithms. The automatic image segmentation technique uses the invariant insignificant distribution to statistical addiction among various active contours. The segmentation of hollow core in microscopic images of photonic crystal fibers to divide the human heart and ventricular areas from datasets of computed tomography and quality of magnetic images. Also, the performance is to estimate the analysis of medical image segmentation framework for implementing the similar events. The image segmentation method outperforms the conventional active contour method has effective segmentation of accuracy and stability. The noise is not modifying the perfect hollow core boundary.

2.3.2 Applications of Image Segmentation

Olivier Ecabert et al. (2011) explained segmentation of the heart and great vessels in CT images using a model-based adaptation framework. Model-based methods for the automatic segmentation of the heart chambers are designed which is used for classification of the heart function. Heart models are employed for interventional guidance creation and required to remove the connected great vessels. A configurable algorithmic framework is called as
adaptation engine that connects the heart model to cardiac CT angiography images in a multi-stage process. Initially, the heart is identified by means of a Generalized Hough Transformation. Then, the heart chambers are modified. This step employs parametric and deformable mesh adaptation methods. Lastly, divisions of the large vascular structures are stimulated and adjusted. To enhance the performance, the adaptation engine changes the mesh resolution and freeze adjusted mesh parts.

Kambiz Frounchi et al. (2011) designed an automating image segmentation verification and validation by learning test Oracle. Image Segmentation Automated Oracle (ISAO) framework utilizes machine learning which is used to design and construct an oracle. It is employed to automatically confirm the exactness of image segmentations, accordingly saving substantial resources and creating the image segmentation verification and validation task in effective manner. The designed technique offers useful feedback to the developer because the segmentation algorithm develops and offers a testing of various parametric configurations of the algorithm. In learning phase, segmentations from the first versions of the segmentation algorithm are confirmed by authorizers. The resemblance of consecutive segmentations of the similar images is calculated in different ways. This information is provides with machine learning algorithm to build a classifier which differentiates the constant and incompatible segmentation pairs.

Max Mignotte (2012) designed MDS-based segmentation model for the fusion of contour and texture cues in natural images. An image segmentation model depending on spatially adaptive non-linear data dimensionality reduction step combining the contour and texture cues. The new dimensionality reduction model goal is to convert an input texture image into a noisy color image for shortening the successive segmentation. In de-texturing model, the non-local constraints depending on edge and contour cues permits to standardize the
minimized data and joins effectively in standardized region. Edge based features in a data fusion/reduction model is employed as a pre-processing step for a last segmentation task. A collection of colour/texture and edge-based adaptive spatial continuity constraints is requires the segmentation step. The developments results in an interesting and powerful two-step adaptive segmentation model with contour and texture cues.

2.3.3 Multi Joint Image Segmentation

Siyue Chen et al. (2011) planned a Maximum Likelihood Approach to Joint Image Registration and Fusion. A Maximum Likelihood Approach is designed for joint image registration and fusion. Exactly, the combined performance is employed as the principle to calculate the registration accuracy. Therefore, the registration parameters are tuned so both fusion and registration are enhanced. The Expectation Maximization Algorithm is used to explain the joint optimization issues. The Cramer-Rao Bound (CRB) is introduced. The mean square error of calculating the registration parameters by means of the designed method is nearer to the CRBs. Simultaneously, an improved fusion is attained using edge preservation measure Q_{AB}/F compared to the Laplacian Pyramid Fusion Technique.

Mohamed Ben Salah et al. (2011) planned Multi region Image Segmentation by Parametric Kernel Graph Cuts. The aim is to study multi region graph cut image dividing through kernel mapping of the image data. The image data was changed completely using a kernel function. The function includes an original data term to calculate the variation of the altered data inside the segmentation region from the piecewise constant model and a smoothness, boundary preserving regularization term. The technique provides an efficient option to difficult modeling of the original image data by considering the computational advantages of graph cuts. With help of kernel function, energy
minimization comprising of iterating image dividing using graph cut iterations and calculations of region parameters through fixed point calculation.

Dragut et al. (2013) briefed an automated parameterization for multi-scale image segmentation on multiple layers. A new automated approach is planned for parameterising multi-scale image segmentation of multiple layers, and designed general tool for the recognition software. This technique depends on the potential of the Local Variance (LV) to identify the scale transitions in geospatial data. The tool identifies the number of layers inserted to a project and divides them with a multi-resolution segmentation algorithm in a bottom-up approach. In this algorithm, scale factor in the segmentation called the Scale Parameter (SP) raises with a stable growth. The mean LV value of the objects in all layers is calculated and provides circumstance for ending the iterations.

Ping-Feng Chen et al. (2010) planned Multiphase Joint Segmentation-Registration and Object Tracking for Layered Images. Layered imaging denotes the imageries from various views by different sensors. Registration and segmentation are the two main tasks supplies to the bottom level and data alignment of the multi-sensor data fusion hierarchical structures. In many developments of two layered images, it is taken that scanners are at very high altitudes and one alteration attaches the two images. Data are taken at mid-range and needs segmentation to support observing various object regions in a divide-and-conquer fashion. The designed technique is a mixture of Multiphase Active Contour Technique with a Joint Segmentation-Registration Technique (MPJSR) taking place in a local moving window prior to a global optimization. Layered video sequences and tracking objects in frames designed adaptation of optical flow outcomes beside the active contours in a pair of layered image series.

framework was designed for two-view multiple structure-and-motion segmentation of indefinite amount of inflexible objects. The segmentation issues contain three unknowns called the object memberships, the essential matrices, and the number of objects. To control recursive issues, hypotheses for basic matrices are created through local sampling. When the hypotheses are accessible, a combinatorial selection issue was created to enhance a model selection cost that considers the hypotheses likelihoods and the model difficulty. A clear model for outliers was an additional task for robust segmentation. The model selection cost was reduced by means of the branch-and-bound method of combinatorial optimization. The designed branch-and-bound technique finds the solution space and assures optimality over the existing set of hypotheses.

2.3.4 Image Retrieval Techniques

Manimala Singha & Hemachandran (2012) introduced Content Based Image Retrieval using Color and Texture. The enhanced requirement of content based image retrieval technique was established in many domains like Data Mining, Education, Medical Imaging, Crime Prevention, Weather forecasting, Remote Sensing and Management of Earth Resources. The content based image retrieval by means of features like texture and color are named as WBCHIR (Wavelet Based Color Histogram Image Retrieval). The texture and colour features are removed via wavelet transformation and color histogram and the mixture of the features is strong to scaling and translation of objects in an image. The designed system expressed a promising and faster retrieval technique on a WANG image database having 1000 general-purpose color images.

Neha Jain et al. (2012) planned Result Analysis on Content Base Image Retrieval using Combination of Color, Shape and Texture Features. Image retrieval depending on color, texture and shape is a raising area. A new technique for joining color, texture and shape information attains higher retrieval efficiency by means of dominant color feature. The image and its complement
are separated into non-overlapping tiles of the same size. The features from the conditional co-occurrence histograms between the image tiles and the complement tiles in RGB color space provide local descriptor of color, shape and texture. Depending on five dominant colors, the related images are recovered. Image information is collected using the edge images calculated by means of Gradient Vector Flow fields. Invariant moments are employed to record the shape features. The mixture of the color, shape and texture features between image and complement in conjunction with the shape features offer a robust feature set for image retrieval.

Reddy & Satya Prasad (2011) planned Color and Texture Features for Content Based Image Retrieval. In the last decade, Content Based Image Retrieval (CBIR) was the significant research area in computer science. A retrieval technique combining the color and texture feature was designed. Based on the features of the image texture, the information of texture were denoted using Multi Wavelet transform. The color correlogram in RGB color space as the color feature are taken.

Umarani Jayaraman et al. (2011) planned an efficient colour and texture based iris image retrieval technique. A hierarchical technique was designed to regain an iris image effectively from a large iris database. The technique was a mixture of iris color and texture where the iris color was utilized for indexing and texture was utilized for retrieval of iris images from the indexed iris record. An index decided from the iris color was employed to remove the images which are not same as query image in color. In addition, iris texture features of the sorted images were used to decide the images that were same as the query image. The iris color information facilitates to plan an effective indexing scheme depending on color indices. The color indices are calculated by taking the mean of all intensity values of all red and blue color pixels. Kd-tree is
employed for real-time indexing depending on colour indices. The iris texture features were attained through Speeded Up Robust Features (SURF) algorithm.

Eugene Santos Jr & Qi Gu (2014) designed for text-to-image re-ranking technique for investigating the enhanced rate of application. The semantic gap is essentially occurs due to low-level visual image features and high-level textual queries by vigorously managing the hierarchy in the form of database model. Every textual query, the initial recovery of accepted search engines takes place of semantic analysis to design the textual query to higher level model. A two-layer scoring method is planned for analyzing the connection among the query model. After that, the query accuracy is concerned for releasing from the user that creates better performance on users queries include less relevant information. Finally, the database model is to control dynamically for achieving the several user queries are required for reducing the human labor in building a sophisticated initial database theory. Image retrieval method is not employed to integrate the improved re-rank text based image outcome is associated with image features.

Ahmed J Afifi & Wesam M Ashour (2012) planned for Content-Based Image Retrieval (CBIR) method used Ranklet Transform and color feature as a visual feature to represent the images. Ranklet Transform is the capable for creating the image invariant to rotation and some image enhancement process. The color image is employed to remove the color feature and apply for similarity matching. Since most of the images is useful to use color image in all around the world. Therefore, color feature is the most important features to describe, while developing a CBIR scheme. The CBIR technique does not demonstrate better result for combining the texture, shape and spatial features with color feature to characterize the image. The segmented regions are mainly used for similarity matching. It shows that the improved gray-level values for peaks equivalent to CNR rate and it is somewhat better, but does not
entirely recover. It does not contain priori information about the distribution of signal coefficients during curvelet decomposition.

Rik Das et al. (2016) describe a method of feature extraction with image binarization for improving the recognition and retrieval of information with content based image recognition. Numerical measures are used for implementing the authorized user responses for manufacturing the technique and introduce the impact of findings. The technique for content based product recognition in an Internet based business model and evaluate the identical object recognition methods are explained. The performance of the retrieval is a better methods and enhanced significant value to foster generation of suitable outcome for a specified content based product query. But, the classification of wrong query from miserable feature removal method to determine the each zero image retrieval is recovered from the misclassified class. Hence, higher degree of misclassification of retrieval query contains the retrieval concert of adverse results are difficult to measure.

2.4 IMPROVING LEVEL OF CONTRAST FROM IMAGE DETECTION

ShijunWang et al. (2014) planned Optimizing area under the ROC curve using semi-supervised learning. Traditional AUC optimization methods were managed learning techniques which uses labeled data to guide the classifier. In semi-supervised and transductive learning, two new AUC optimization algorithms were designed as Semi-Supervised Learning Receiver Operating Characteristic (SSLROC) algorithms that use unlabeled test samples in classifier training to increase AUC. Unlabeled samples were included into AUC optimization process and ranking links tagged positive and negative training samples were taken as enhancement limits. The test samples resulting in decision boundary in a multi-dimensional feature space to adjust allocation of labeled training data and allocation of unlabeled test data. Semi-Supervised
AUC optimization problem as a semi-definite programming problem were designed depending on the margin maximization theory.

Xin Li (2011) designed Fine-Granularity and Spatially-Adaptive Regularization for Projection-Based Image Deblurring. Two classes of regularization strategies were studied to attain enhanced tradeoff between image recovery and noise control in projection-based image deblurring. Initially, an easy technique called r-times Landweber iteration results in a fixed level of regularization that permits to attain fine-granularity control of projection-based iterative deblurring by changing the value r. The regularization performance is enlightened using theory of Lagrangian multiplier for variational schemes. Next, class of regularization strategy depends on the observation in which many regularized filters were analyzed as non-expansive mappings in the metric space. Consideration with various regularization filters were achieved through probing with asymptotic behavior-the fixed point of non-expansive mappings. Different image structures symbolize various fixed points of non-expansive mappings when the temperature parameter changes.

Giacomo Boracchi & Alessandro Foi (2010) designed Uniform Motion Blur in Poissonian Noise: Blur/Noise Tradeoff. The restoration of images degraded was taken by both uniform motion blur and Poissonian Noise. An image formation model was created that clearly considers the length of the blur point-spread function and the noise level as functions of the revelation time. Examinations of the achievable restoration results were obtained by explaining the root mean squared error alteration regarding the exposure time. It produces the bad conditions that were denoted by short or long coverage times. There presents an optimal exposure times where the restoration performance matching the amount of blur and noise in the examination.

Vijayaraghavan Thirumalai & Pascal Frossard (2012) planned Distributed Representation of Geometrically Correlated Images with
Compressed Linear Measurements. The issues of distributed coding of image correlation were determined using the motion of objects or the location of the visualization sensors. A geometry-based correlation model was designed to explain the correlation between the pairs of images. The constitutive components of natural images were detained by visual features which experiences the local transformations in various images. The correlation model was denoted using geometric transformations between equivalent features. A regularized optimization problem for the calculation of correspondences was solved in which the local transformations between images form a consistent motion or disparity map. An effective joint reconstruction algorithm was designed to decode the compressed images to stay reliable with the quantized quantity and the correlation mode.

2.4.1 Algorithms and Methods for Contrast Enhancement

Guang Deng (2011) planned a Generalized Unsharp Masking Algorithm. Unsharp Masking was a conventional tool for improving the sharpness. A Generalized Unsharp Masking Algorithm was designed by means of exploratory data model as an integrated technique. The designed algorithm contains three problems: at the same time improving the contrast and sharpness using individual treatment of the model component and the residual, decreasing the halo effect using an edge-preserving filter, and explaining the out-of-range issues using log-ratio and tangent functions. The properties of the log-ratio operations were studied and provide a new link connecting the Bregman divergence and the generalized linear systems. This link offers a new insight into the geometrical property of systems, releases a new way for system growth. A new system known as tangent system depends on exact Bregman divergence.

Shyam Lal & Mahesh Chandra (2014) briefed an Efficient Algorithm for Contrast Enhancement of Natural Images. An effective algorithm for contrast enhancement of natural images was designed. The contrast of images was vital
features where the quality of images was recognized. The algorithm comprises with two steps: In initial step, the poor quality of an image was developed by altered sigmoid task. In second step, the output of the first stage was developed via contrast restricted adaptive histogram equalization to improve the contrast of images. To attain the contrast development of images, new mask depending on input value jointly with altered sigmoid formula was employed as contrast enhancer besides contrast restricted adaptive histogram equalization. New contrast enhancement algorithm exceeds the input image that functions on its pixels in spatial domain. Designed algorithm achieves efficiently in various dark and bright images by changing their contrast.

Phanindra Reddy et al. (2013) planned a Wavelet Based Generalized Unsharp Masking Algorithm. Contrast improvement and image sharpness were employed in many applications. Unsharp Masking was a device for sharpening an image. Unsharp Masking Algorithm was employed for the exploratory data model as a combined technique. The designed algorithm contains three problems: Contrast was enhanced and image was sharp using individual treatment of the residual and the model component. Next, halo effect was minimized using wavelet based denoising techniques. Last one is out-of-range issues were explained using log-ratio and tangent operation.

Esmaeil Faramarzi et al. (2013) designed Unified Blind Method for Multi-Image Super-Resolution and Single/Multi-Image Blur Deconvolution. The designed technique depends on the Alternating Minimization (AM) of a new cost function regarding the unknown High-Resolution (HR) image and blurs. The regularization for the HR image is depends on the Huber-Markov Random Field (HMRF) model, is a kind of variational integral that uses the piecewise smooth nature of the HR image. The blur estimation process is maintained by an edge-emphasizing smoothing operation to enhance the quality of blur calculates by improving strong soft edges toward step edges during the removal of weak
structures. The parameters were modernized in order that the number of salient edges employed for blur estimation enhances the iteration. The blur estimation was performed in the filter domain than the pixel domain by means of the gradients of LR and HR images. The regularization term for the blur is Gaussian (L2 norm) that permits for fast non iterative optimization in the frequency domain.

Behrouz Fathi-Vajargah & Maryam Gharehdaghi (2014) explained for fuzzy enhancement technique with ergodic fuzzy Markov chains for small contrast brain of Magnetic Resonance Imaging (MRI). The enhancement of fuzzy image contrast is planned by weighted fuzzy expected value. The relationship between the altered values is used to increase the image by ergodic fuzzy Markov chains. The performance of fuzzy technique is evaluated from other process of the ergodic fuzzy Markov chains are not measured. A fuzzy enhancement method demonstrates to provide the enhanced quality of image. The traditional value of pixel image is not accurate and it presents the essential imprecision in a digital image.

2.4.2 Various Approaches on Image Enhancement

Yun-Fu Liu et al. (2011) planned Inverse HalfToning Based on the Bayesian Theorem. The designed technique creates high quality inverse halftone images from halftone images. The designed technique was used for signal processing over a halftone image or the inverse halftoning employed in JBIG2. The technique uses the Least-Mean-Square (LMS) algorithm to create a connection among the current processing position and its equivalent adjacent positions in all halftone images along with direct binary search, error diffusion, dot diffusion, and ordered dithering. A referenced region called a Support Region (SR) is employed to remove features. The SR is attained by relabeling the LMS-trained filters with the significance order. Besides, the probability of black pixel happening is taken as a feature. Consistent with the feature, the
possibilities of all gray-scale values at the existing processing position are attained using Bayesian theorem.

Derin Babacan et al. (2011) planned Variational Bayesian Super Resolution. The super resolution (SR) problem from a set of degraded Low Resolution (LR) images were used to attain a High Resolution (HR) image. Exact evaluation of the sub-pixel motion between the LR images changes the outcome of the modernized HR image. The New Super Resolution Techniques were designed in which the HR image and the motion parameters were calculated at the same time. By using Bayesian formulation, the unknown HR image, the acquisition process, the motion parameters and the unknown model parameters in a stochastic sense were performed. By using variational Bayesian analysis, two new algorithms calculate the distributions of all indefinites.

David Humphrey & David Taubman (2011) planned a Filtering Approach to Edge Preserving MAP Estimation of Images. An effective method was designed for Maximum a Posteriori (MAP) estimation of images containing of both blur and noise. The image was separated into independent regions. Each region was modeled with a WSS Gaussian prior. Classical Wiener filter theory was employed to create a set of convex sets in the solution space and MAP evaluation problems taking place at joining of sets. The algorithm employs segmentation of the image as well as establishing the segmentation and refines it. The algorithm was appropriate for image restoration issues because it offers an efficient method to manage the limitations of Wiener filtering without sacrificing the computational simplicity of the filtering technique. The algorithm with the theoretical perspective offers a range of solutions between Wiener filtering and inverse filtering based on the segmentation employed.

subspace optimization methods in the area of image restoration were designed. Subspace optimization technique joins the class of iterative drop algorithms for unconstrained optimization. In the iteration of methods, a step size vector permitting the mixture of various search directions was calculated through a multidimensional search. It is attained by an inner iterative second-order technique lined through a stopping measure which creates the junction of the outer algorithm. A multidimensional search strategy depending on majorize-minimize principle are also designed. It results in a closed-form step size formula which guarantees the meeting of the subspace algorithm no matter what the number of inner iterations exists.

Xiaolin Wu (2011) designed a Linear Programming Approach for Optimal Contrast-Tone Mapping. A new technique was designed for image enhancement through optimal contrast-tone mapping. In essential removal from the histogram equalization for contrast enhancement, the designed technique exploits estimated contrast gain subject to an upper limit on tone distortion and other limitations contains artifacts. The fundamental contrast-tone optimization issues were answered by means of linear programming. The new constrained optimization technique for image improvement was common, and tunes the restrictions to attain preferred visual effects.

Oleg V Michailovich (2011) offered an Iterative Shrinkage Approach to Total-Variation Image Restoration. Different techniques were designed to the solution of the issues is designed depending on the technique of iterative shrinkage. In designed technique, the TV-based image restoration was carried out during a recursive application of two easy actions. So, the techniques were recognized to the group of first-order algorithms that were effective in managing the images of large sizes. Significant feature of the designed techniques comprises functioning with the TV functional rather than with its smoothed versions. Technique offers a single solution for both isotropic and anisotropic
definitions of the TV functional, so it links between the two formulae. A number of standard image deblurring was designed to offer restoration results of superior quality compared to the case of sparse-wavelet deconvolution.

Hasan Demirel & Gholamreza Anbarjafari (2011) planned Image Resolution Enhancement by using Discrete and Stationary Wavelet Decomposition. An image resolution improvement method depending on interpolation of the high frequency sub-band images were attained using Discrete Wavelet Transforms (DWT) and the input image. The edges were improved by establishing an intermediate stage with help of Stationary Wavelet Transform (SWT). DWT is used to delete an input image into different sub-bands. Next, the high frequency sub-bands and the input image were interrupted. The calculated high frequency sub-bands were changed with help of high frequency sub-band attained through SWT. All sub-bands were joined to create a new high resolution image with help of Inverse DWT (IDWT).

Ramandeep Kaur & Navleen Kaur (2014) designed for image enhancement plays a significant role in the field of digital image processing. It is one of the essential image applications, since it has ability to increase the visibility of images. It is used to develop the quality of poor pictures. The function of Image Enhancement is employed for transforming the poor quality into high-quality images therefore the images is clear for human perception. The enhancement of image is to investigate and establish the shortcomings of the presented image enhancement methods. The modified image enhancement model is not designed to increase the limitation of the previous work. Hence, the implementation of image enhancement system is not measured for suitable tool of experimental purpose.

Nedhal A Al-Saiyd & Sameera M Talafha (2015) explained for enhancement method for Mammographic image. The process of Mammographic
image is more efficient for breast cancer screening and previous detection of masses. While the mammographic image is address the qualified radiologists for interpretation, accuracy is affected by poor contrast, quiet form of subtle details and high percentage of blurring and noise. It is necessary to develop the appropriate enhancement methods which effort to make diagnostic more obvious. As they provide a several option for maximizing the visual quality of images. The enhanced image mammographic is employed to obtain different methods based on the field. The mammographic image is used to create noisy mammographic image though the quality of high contrast image.

Sargun & Shashi B Rana (2015) designed for the process of image enhancement. It is the mainly based on most significant and complex techniques in image processing technology. The visual form of image is enhanced for producing better transform representation of image using image enhancement. Image enhancement technique is essential to contrast and extract the noise to enhance the image quality. Several techniques are depends upon the transform domain methods which initiate the artifacts and reduce the capacity of the input image. Image processing highlights the different image enhancement which is especially for medical image enhancement allow medical professional. Since the edge preserving fuzzy is the capability of increasing the performance of noise to produce the better results for protecting the edges in efficient way. Also the image technique is utilized to illuminate normalization supports the gray world hypothesis to enhance the artifacts.

Archana Singh & Neeraj Kumar (2014) described to enhance an image using local standard deviation. Global enhancement is employed to develop the image contrast is integrated with technique of local image contrast enhancement. Global enhancement method depends upon the local and global information that attains a better contrast image. In addition to the gray values of pixels is used to vary according to the objective gray scaled image. The
combination of local contrast enhancement for such type of information is obtainable in the region of dynamic region is decreased. By evaluate these results, global enhancement method provides the high image with natural enhancement. The images that are captured by camera or other optical system contain very high contrast.

2.4.3 Contrast Enhancement Application in Medical Field

Jacob Levman et al. (2008) designed Classification of dynamic contrast-enhanced magnetic resonance breast lesions by support vector machines. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) was the susceptible modality for screening high-risk women. Computer-Aided Diagnosis (CAD) systems contain the potential to help the radiologists in finding of cancer at previous stage. The constituent growth of CAD system was the choice suitable classification function depending on dividing malignant and benign lesions. The aim of the designed technique was to estimate the results of alterations in temporal feature vectors and kernel functions on the partition of malignant and DCE-MRI breast lesions using Support Vector Machines (SVMs). SVMs offer an efficient and flexible technique to support CAD techniques for breast MRI, and classifier visualization technique was designed which containing the potential as a method for the estimation of classification solutions.

Jianfei Liu et al. (2014) planned Tumor sensitive matching flow: A variational method to detecting and segmenting perihepatic and perisplenic ovarian cancer metastases on contrast-enhanced abdominal CT. Variational approach was known as Tumor Sensitive Matching Flow (TSMF) designed to identify and divide the perihepatic and perisplenic ovarian cancer metastases. TSMF was an image motion field which emphasizes metastasis-caused deformation on the surface of liver and spleen while moistening the image motion among the patient image and the atlas image. The advantages of the
designed approaches were given by: contrasting the functions of image matching and metastasis categorization inside a variational framework, needs a small set of features from a few patient images to guide a metastasis-function for classification and actively creates shape priors for Geodesic Active Contour (GAC) to avoid inexact metastasis segmentation.

Carlos S Mendoza et al. (2014) explained personalized assessment of craniosynostosis via statistical shape modeling. A new method was designed for the examination of craniosynostosis from CT images. Mechanical method employs a numerical shape form to create diagnostic features adapted to the anatomy of the topic. A computational anatomy technique was designed for determining the shape abnormality with the neighboring one from a multi-atlas of normal cases. However, the malformation characterization was controlled for craniosynostosis. It engages many goals like mechanical labeling of cranial regions through graph cuts, recognition of the adjacent morphology to a subject by means of a multi-atlas of standard anatomy, identification of stitch fusion, listing by means of masked regions and diagnosis through classification via quantitative measures of local shape and malformation.

Carsten Kendziorra et al. (2014) planned Implementation of Phase Detection Algorithm for Dynamic Cardiac Computed Tomography Analysis Based on Time Dependent Contrast Agent Distribution. A phase detection algorithm was planned for four-dimensional (4D) Cardiac Calculated Tomography (CT) analysis. The algorithm identifies a phase with high contrast in the left ventricle and low contrast in the right ventricle. The aim was to employ the identified phase in an algorithm which supports the images beside the heart axis. Decision making depends on contrast agent distribution over time. It was designed in Kardio Perfusion – a software technique that designed for 4D CT myocardial perfusion examination.
Jing Li et al. (2014) designed 3D Contrast Enhancement-MR Angiography for Imaging of Unruptured Cerebral Aneurysms: A Hospital-Based Prevalence Study. Contrast Enhanced MRA (CE-MRA) facilitates to solve the constraints of other methods to present the features of cerebral aneurysms at 1.5-T MR system. The existence of Unruptured Cerebral Aneurysms (UCAs) using three dimensional (3D) CE-MRA in a tertiary hospital in China is adopted. 3D CE-MRA reduced by 2 observers screened to the participant’s information was employed to recognize the location and size of UCAs and to calculate the overall, age-specific, and sex-specific occurrence. As the break of small cerebral aneurysms was frequent, suitable summarizing steps are created.

Gurpreet Kaur & Gagan Jindal (2013) designed an Enhancement of Medical Images using Classical Unsharp Mask Filter and Log Gabor Filter. For enhancing the medical image visual quality, a new technique was planned for unsharp masking for edge protection and contrast improvement of an image. The designed technique uses classical Unsharp Masks Filter for the improvement of the medical images that protects the edge and preserves the contrast which is appropriate for body part. Image Enhancement changes images to offer enhanced demonstration of the subtle features. It is an essential tool in a large range of fields with medical imaging, art studies, forensics and atmospheric sciences.

2.4.4 Contrast Enhancement

Nungsanginla Longkume et al. (2014) briefed Contrast Enhancement using Various Statistical Operations and Neighborhood Processing. Histogram Equalization was an easy and efficient contrast development method. Although, histogram equalization contains the demerits like unnatural images and the local details were not taken, when artifacts are created. Because of these disadvantages, equalization techniques were based on high grades. Statistics was a significant part in image processing in which the statistical operations was
linked with the image to attain the expected outcomes like manipulation of brightness and contrast. A new algorithm using statistical operations and neighborhood processing are described where the algorithm was confirmed to be efficient in contrast improvement depending on the theory.

Iyad Jafar & Hao Ying (2007) explained a New Method for Image Contrast Enhancement based on Automatic Specification of Local Histograms. Local enhancement technique named Automatic Local Histogram Specification (ALHS) was designed. The ALHS method was used for each pixel in image neighborhood/block of definite size is identified with pixel at middle of the block. ALHS method also changes the gray level value of the central pixel by denoting an output histogram and relating the histogram matching algorithm. The main aim of the ALHS method was to identify the output histogram for the block linked with each pixel. To identify the output histogram, a minimization issue for a functional with a limitation maintains the mean brightness of the block which was explained. The denoted histogram in the ALHS method offers the maximum gray level stretching and maintains the mean brightness of the block.

Sayali Nimkar et al. (2013) introduced Contrast Enhancement and Brightness Preservation using Multi-Decomposition Histogram Equalization. Histogram Equalization (HE) was significant in Image Enhancement. Developing techniques like Classical Histogram Equalization (CHE), Adaptive Histogram Equalization (AHE), Bi-Histogram Equalization (BHE) and Recursive Mean Separate Histogram Equalization (RMSHE) methods improves only contrast and the brightness was not maintained. So, it provides an unpleasant look to the final image attained. Multi-Decomposition Histogram Equalization (MDHE) technique was designed to remove the issues of the existing methods. In MDHE, the input images are decomposed by means of a unique logic used by CHE in all sub-images and lastly interrupted in exact order.
MDHE provides better performance depending on contrast enhancement and brightness preservation feature based on other methods.

Yasunobu Yamashita et al. (2015) designed for the efficiency of Contrast-Enhanced Endoscopic Ultrasonography (CE-EUS) for histological separation of pancreatic tumors. CE-EUS method is used to achieve the subsequent patients having a pancreatic solid lesion and tumors are classified as various vascular patterns at more phases. The relationship among vascular patterns and histopathology of eradicated Pancreatic Cancer (PC) tissues are determined. The ultimate diagnoses of observe tumors such as inflammatory mass, autoimmune pancreatitis and neuroendocrine tumor. The Early-phase iso vascular PCs is possible to distinguish than other early phase hypo vascular. CE-EUS technique is very effective to characterize the PC from other solid pancreatic lesions for histological separation of PCs. An analysis of wide CE-EUS images is not shows that the different method to EUSFNA for the diagnosis of pancreatic tumors.

Diego DB Carvalho et al. (2015) planned for the sequence of image from standard B-Mode Ultrasound (BMUS) and Contrast Enhanced Ultrasound (CEUS) techniques. At first, the Non-Rigid Motion (NME) process is used to evaluate from the image sequences with intensity-based image registration. The ordinary motion-compensated image sequence is employed to achieve individual ‘epitome’ image through enhanced signal-to-noise ratio. The epitome image of lumen is segmented during the strength of joint-histogram classification and graph-based segmentation. The NME method is used to authorize for evaluating displacements by manual annotations during more carotids. The consequences of segmentation are verified against manual delineations in epitome images for various datasets. Automatic vessel detection is not including the presence of jugular vein and carotid arteries with bifurcation. For these cases, it is not
modify the automated centerline detection stage. Moreover, to remove media-adventitia layer detection as well as plaque segmentation.

Shibin Wu et al. (2013) explained for the algorithm of feature and contrast enhancement of mammographic images. Initially, the Laplacian Gaussian pyramid operator is very useful to convert the mammography into level of sub image is varied. In addition, the high frequency sub images are compared with Contrast Limited Adaptive Histogram Equalization (CLAHE) and low-pass sub images are processed by numerical morphology. After that, the improved image of feature and contrast is rebuild from the Laplacian Gaussian Pyramid coefficients changed with high CLAHE method. The feature and contrast enhancement algorithm is calculated with contrast evaluation criterion for image, Signal-Noise-Ratio (SNR) and Contrast Improvement Index (CII). Finally, the noise level of feature and contrast enhancement algorithm is increased. It is difficult to analyze the fibroglandular and tissue nodes and it cannot apply in clinical application.

Amit et al. (2013) introduce the original denoising method is mainly depend on the curvelet transform. Initially, a recursive temporal filter is concerned for the curvelet coefficients. After that, a spatial filtering is employed for magnitude-based classification and a contextual comparison of curvelet coefficients, since the residual noise remains. It provides the sequence of denoises as preserving low-contrasted structures are not maximize their contrast. Finally, a third step is utilized to enhance the features of interest. Certainly, thin structures are sparsely represented in that domain, allowing a fast and efficient detection. Lowering the dose consists of undesirable side effect for increasing the image noise and degrading the contrast important to a trade-off among dose reduction and image quality. Therefore, the consuming the radiation is not described itself for affecting the health.
Muna F Al-Samaraie et al. (2011) planned a New Enhancement Approach for Enhancing Image of Digital Cameras by Changing the Contrast. A new image enhancement approach was designed for digital cameras. High contrast images are frequent with dark shadows and bright light sources. Both the dark and light areas are concurrently on devices is a complex task. To overcome this issue, this design improves the total brightness and contrast of images while preserving. It depends on two-scale decomposition of the image into a base layer, programming large-scale differences, and a detail layer. The base layer was attained by edge preserving filter which was weighted average of the local neighborhood models where the weights were analyzed depending on temporal and radiometric distances between the center sample and the adjacent samples. The base layer image was enhanced automatically by using histogram equalization method.

Salem Saleh Al-amriet al. (2010) planned Linear and Non-linear Contrast Enhancement Image. The research was based on two types of the contrast developing methods, linear contrast methods and non-linear contrast methods. Linear contrast methods employs three methods like Max-Min contrast method, Percentage contrast method and Piecewise contrast technique. Non-linear contrast techniques use four contrast methods namely, Histogram equalization method, Adaptive histogram equalization method, Homomorphic Filter method and Unsharp Mask. In the Homomorphic Filter method uses two types of filters called Low Pass Filter (LPF) and High Pass Filter (HPF).

Sonia Goyal & Seema Baghla (2011) planned Region Growing Adaptive Contrast Enhancement of Medical MRI Images. Medical imaging is the functional area of digital image processing. Many methods were offered for improving the quality of medical image. For improvement of medical images, contrast enhancement was one of the suitable techniques. Various contrast enhancement techniques like Linear Stretch, Histogram Equalization, Region
based enhancement, Adaptive enhancement are present. Selection of technique is based on the characteristics of image. Contrast enhancement of MRI images and new technique for contrast enhancement depends on Adaptive Neighborhood technique.

Chulwoo Lee et al. (2011) designed Power-Constrained Contrast Enhancement for Emissive Displays depending on Histogram Equalization. A power-constrained contrast-enhancement algorithm depending on Histogram Equalization (HE) for emissive displays was designed. Log-based histogram modification scheme aims to minimize the overstretching artifacts of the predictable HE technique. After that, power-consumption model was designed for emissive displays and create an aim function containing histogram-equalizing term and the power term. By reducing the objective function depending on the convex optimization theory, the designed technique attains contrast enhancement and power saving.

Nivedita V Deshmukh & Apte (2013) planned Contrast Enhancement of Gray Image using Proposed Mask in Discrete Cosine Transform Domain. A new technique was designed for contrast enhancement depending on the discrete cosine transform. The method changes the image into DCT domain and the DCT coefficients are altered by means of proposed mask. Lastly, the improved image was reformed by means of inverse DCT. The discrete cosine transform functions with better image quality and highest PSNR value for noiseless gray images.

Debashis Sen & Sankar K Pal (2011) explained an Automatic Exact Histogram Specification for Contrast Enhancement and Visual System Based Quantitative Evaluation. Histogram equalization has goal of information maximization that are broadly employed in many ways to execute contrast improvement in images. A mechanical accurate histogram specification technique was designed and employed for global and local contrast enhancement of images. The preferred histogram was attained by first focusing the image
histogram to an alteration process and maximizes a measure that denotes raise in information and decrease in ambiguity. A new technique of calculating image contrast depending on local band-limited technique and center-surround retinal receptive field model is designed. The technique functions at multiple scales and joins the contrast calculations obtained at different scales by means of L^p-norm.

Rajlaxmi Chouhan et al. (2012) described Contrast Enhancement of Dark Images using Stochastic Resonance in Wavelet Domain. Dynamic Stochastic Resonance (DSR)-based technique in Discrete Wavelet Transform (DWT) domain was designed for the improvement of dark gray-scale and colored images. In DSR, the outcome of an input signal was enhanced by external noise. But, the intrinsic noise of an image was used for the function of contrast enhancement. The DSR procedure adjusts the DWT coefficients by means of bi-stable system parameters. The DSR-based technique improves the image by not establishing the blocking, ringing or spot artifacts.

The sphere shaped Total Variation (TV) methods were developed into an in-painting issues which computationally feasible at high-resolution. Local Histogram Equalization (LHE) requires high computational cost and causes over-enhancement in some part of the image. Complexity in LHE improves the noise level in the input photo image all the length of image features. Max-margin learning algorithm fails to enlarge cluster-based parallel computing stage for inter-related classifier. It was also not very attractive to consider higher order nearest neighbors in inter-related classifier process. Boosted Detectors towards Viewpoint fails to prepare the system by integrating online updating ability into parameterized CovBoost. A parametric Switching Chaotic System (PSCS) shows more common properties, including the Sine and Tent maps as exacting instances but the periodicity was in higher ratio. An efficient minimization algorithm based upon graph cuts fails to have the exact relationship on gradient
flow. It also shortens the problem by solving a series of graph representable problems.

HAIRIS with different spectral content was applied only to single-band images but not implemented towards multi-band image segmentation and it also consumed more computational time during the single-band segmentation stage. Flexible segmentation framework with unsupervised method consumed more time on simply segmenting the colors from multi-class images. In Model-Based Adaptation Framework, Generalized Hough Transformation was applied to multi-class images to minimize the computation time. Though efficiency was improved, was not efficient in addressing other modalities. Minimum Spanning Tree (MST-based graph) improves complexity connected with computation. However with minimal parameters, the effectiveness was achieved, but not suited for high dimensional datasets.

Least Mean Square algorithm was designed with the objective of obtaining better visual quality by reducing the peak-signal noise-to-ratio. However, with the increase in the size of the images, the noise-to-ratio also increased. Total Variation (TV) based image restoration applied linear filtering and soft thresholding to deal the images with large sizes. But, contrast remained unaddressed. Joint decoding algorithms and geometric correlation were also derived for the effective distributed image processing. However, enhancement for contrast images was not included. In Automatic detection of computed tomography analysis, edge filtering for contrast images remained unaddressed. The failure on handling multi-resolution effect does not permit the user to have better control over edge filtered contrast enhancement.

2.5 RESEARCH GAP

Max-margin learning algorithm achieves effective training of a large number of inter-related classifiers for multi-label picture annotation application. But, Max-margin learning algorithm fails to increase the cluster-based parallel
computing stage for inter-related classifier. It is also not very attractive to take higher order nearest neighbors in inter-related classifier process. Gaussian Mixture Modeling (GMM) experiences tradeoff between robustness to background image modification and consideration to foreground abnormalities. GMM was ineffective in running and giving the solution for different observation scenarios.

Least-Mean-Square (LMS) algorithm creates a connection between the present processing location and its equivalent adjacent positions. The position in halftone image includes shortest binary search and error diffusion. However, LMS fails to increase a hybrid method for all possible components. A solution provided to the all critical cases by adjusting generic detectors and predetermines a priori knowledge in the form of chosen features and weak classifier weighting. Though, Boosted Detectors towards Viewpoint fails to organize the system by combining online modernizing ability into parameterized CovBoost.

Model-based adaptation framework comprised with multi-class feature, left atrium and the proximal part of the pulmonary veins with coronary sinus for computing different size of heart chambers in a considerable and reliable manner. To increase the complexity connected with computation, a technique called as Minimum Spanning Tree (MST-based graph) was designed by K-means. Though, with minimal parameters the efficiency was achieved, but not appropriate for high dimensional datasets.

Image Segmentation Automated Oracle (ISAO) was efficiently employed to construct an oracle that shaped on the basis for automatic verification and support for image segmentations. Although, the method appeared to be capable except the number of iterations necessary to achieve the whole process remain unaddressed. Two novel methods namely Fractional-
Order Darwinian Particle Swarm Optimization (FODPSO) and Darwinian Particle Swarm Optimization (DPSO) were designed for determining the optimal threshold level for a particular image. Though, more steadiness’s with less CPU time were guaranteed, the computational complexity of the algorithm stayed low.

Least Mean Square algorithm was designed with the aim of attaining better visual quality by minimizing the peak-signal noise-to-ratio. Though, with the increase in the size of the images, the noise-to-ratio also increased. A geometry based correlation approach was planned for attaining the correlation between the images and multi-view datasets. Joint decoding algorithms and geometric correlation were derived for the efficient distributed image processing. But, enhancement for contrast images was not integrated.

Automatic detection of computed tomography analysis offered an exact and fast tool for high contrast and low contrast images. Though, edge filtering for contrast images stayed unaddressed. A new automated model for parameterising multi-scale image segmentation was designed. However, automation and objectivity was raised, but the scale applied was comparatively less addressed. Generalized Hough Transformation was functional with multi-class images to reduce the computation time. However, the efficiency improved was not enough in addressing other modalities.

2.6 CONTRIBUTION

The main contribution of this work is

(i) To discover a work plan for conquering the noise defects using Intensity Histogram Equalization (IHE) method.

(ii) To preprocess the image for removing noise and enhancing the image contrast for disparity enhancement using IHE method.
(iii) To generate a binary image for each band in the entire image using Region-of-Interest (ROI).

(iv) To improve the efficiency of segmentation through Multi-Class Independent Component InfoMax Analysis (MICIA) on multi-class high quality color images.

(v) To attain the richer segmentation of color textures with minimal computational time and to evaluate the image at minimum timing interval using Minimal Spanning Forest method.

(vi) To achieve the richer segmentation of color textures with maximum likelihood function using Independent Component Analysis based on InfoMax.

(vii) To improve the contrasting on edge filtered images using Degeneration Threshold Image Detection (DTID) framework.

(viii) To handle high dynamic contrast images for smoothed edge preserving with minimal filtering time using Rapid Bilateral Filtering process.

(ix) To attain high quality of image being detected by means of Affine Planar Transformation.

2.7 CONCLUSION

In this chapter cons and pros of the image contrasting and segmentation of the images were studied. Some of the disadvantages exists in the earlier systems were higher computational cost, high computational complexity, less efficiency after joining the segmented images, high noise defects, fails to contain better control over edge filtered contrast enhancement, not suitable for high dimensional datasets and fails to increase the cluster-based parallel computing stage for inter-related classifier. These demerits of the existing systems are solved in the proposed method. In the proposed method, new plan is introduced to reduce the noise defects. Preprocessing of image is
carried out for removing noise and for improving the image contrast for disparity enhancement. The efficiency of segmentation gets improved and attained the richer segmentation of color textures with minimal computational time. The proposed technique also improves the contrasting on edge filtered and handled high dynamic contrast images for smoothed edge preserving with minimal filtering time. Finally in the proposed technique, the overall efficiency gets improved.