CONTENTS

SYNOPSIS

1 Introduction

1.1 Wave Diffusion 1.1
1.2 Anderson Localization 1.2
1.3 Localization of Light 1.4
1.4 Criterion for Localization 1.6
1.5 The Coherent Backscattering Effect 1.7
1.6 Lasing Action From Coherent Feedback 1.10
1.7 Invariant Imbedding Approach to Wave Transport 1.12
1.8 Problems Studied in this Thesis Connected with Photon
 Transport in Disordered Media 1.13
1.9 Fermi Liquids 1.15
1.10 The Luttinger Liquid 1.18
1.11 Transport Properties 1.21
1.12 Isolated Impurities 1.22
1.13 Examples of Luttinger Liquids 1.23
1.14 Problems Studied in this Thesis Connected with Electron
 Transport in Disordered Media 1.24

References 1.26

2 The Transport Coefficients in Presence of an Imaginary Potential

2.1 Introduction 2.1
2.2 Absorption 2.2
2.3 The Optical (Imaginary) Potential 2.3
2.4 Constant Imaginary Part 2.4
 2.4.1 Reflection 2.5
 2.4.2 Absorption 2.6
 2.4.3 Transmission 2.7
2.5 Random Imaginary Part 2.7
 2.5.1 Reflection 2.12
 2.5.2 Absorption 2.13
 2.5.3 Transmission 2.16
2.6 Conclusion 2.16

References 2.18
Reflection of Light from a Random Amplifying Medium with Disorder in the Complex Refractive Index: Statistics of Fluctuations:

3.1 Random Laser 3.1
3.2 The Gaussian White Noise Disorder 3.8
 3.2.1 The Fokker-Planck Equation 3.9
 3.2.2 Results and Discussion 3.13
3.3 Correlated Telegraph Disorder 3.17
 3.3.1 Results and Discussion 3.23
3.4 Conclusion 3.30
References 3.32

Effect of Variation of the Background Profile on the Reflection Statistics of Random Laser

4.1 Introduction 4.1
4.2 Model 4.2
4.3 Conclusion 4.8
References 4.9

A Scaling Theory for Transport Across Dirty Luttinger Liquids

5.1 Luttinger Liquid in One Dimension 5.3
5.2 d-Dimensional Luttinger Liquid 5.6
5.3 Distribution of Resistance for d-Dimensional Luttinger Liquid 5.10
5.4 Results and Discussion 5.13
References 5.15

Tunneling Conductance at Finite Bias of Luttinger Liquid Loops and Bundles

6.1 Tunneling Conductance of a Loop 6.3
6.2 Multi Channel Luttinger Liquid 6.12
6.3 Conclusion 6.15
References 6.16