# CONTENTS

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>General Introduction</td>
<td>1-22</td>
</tr>
<tr>
<td></td>
<td>1.1 Enzymes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2 Production, marketing and applications of industrial enzymes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Proteases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.1 Sources of proteases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.1.1 Plant proteases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.1.2 Animal proteases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.1.3 Microbial proteases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.2 Classification of proteases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.3 Genetic engineering of microbial proteases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.4 Applications of proteases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.4.1 Detergent industry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.4.2 Leather industry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.4.3 Food industry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.4.4 Dairy industry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.4.5 Baking industry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.4.6 Manufacture of soy products</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.4.7 Debittering of protein hydrolysates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.4.8 Synthesis of aspartame</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.4.9 Pharmaceutical industry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.4.10 Proteases and health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.4.11 Proteases and environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.4.12 Other applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3.5 Protein engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4 Solid state fermentation (SSF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 Immobilization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5.1 Techniques of whole cell immobilization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5.1.1 Entrapment of cells</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5.1.2 Covalent binding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5.1.3 Adsorption</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5.1.4 Cross-linking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5.2 Applications of immobilization technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5.2.1 Analytical and medical applications</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Review of literature</td>
<td>23-55</td>
</tr>
<tr>
<td></td>
<td>2.1 Microbial protease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 Genetic engineering of alkaline protease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 Solid state fermentation of microbes</td>
<td></td>
</tr>
</tbody>
</table>
2.4 Enzymes produced by SSF
   2.4.1 Solid state fermentation of proteases
2.5 Scale up studies for production of alkaline protease
   2.5.1 Design of fermenters
2.6 Applications of solid state fermentation
   2.6.1. Leather industries
      2.6.1.1 Biotechnology of leather industry
      2.6.1.2 Biotechnological processes of leather making
         (a) Soaking
         (b) Bating
         (c) Degreasing
      2.6.1.3 Unhairing and liming
         (a) Enzyme-assisted chemical unhairing
         (b) Chemical-assisted enzyme unhairing
      2.6.1.4 Advantages of enzymatic dehairing
   2.6.2 Biocontrolling
2.7 Microbial immobilization
2.8 Review on alkalophilic *Bacillus* sp JB-99.
   2.8.1 Isolation of strain, production and characterization of alkaline protease
   2.8.2 Production and characterization of xylanases
2.9 Scope of the present investigation

III Production of thermostable alkaline protease from alkalophilic *Bacillus* sp. JB-99 using Solid State Fermentation

3.1 Introduction
3.2 Materials and Methods
   3.2.1 Chemicals and substrates
   3.2.2 Microbial strain and its maintenance
   3.2.3 Detection of protease activity by skimmed milk and casein agar hydrolysis method
   3.2.4 Detection of starch utilization by *Bacillus* sp. JB-99 on wheat bran
   3.2.5 Enzyme production and extraction in SSF
   3.2.6 Enzyme assay
   3.2.7 Optimization conditions for production of thermostable alkaline protease through SSF
      3.2.7.1 Screening of various substrates for the production of alkaline protease
      3.2.7.2 Alkaline protease production V/s incubation period
      3.2.7.3 Selection of a suitable mineral salt solution (MS)
      3.2.7.4 Effect of moisture level
      3.2.7.5 Effect of temperature
      3.2.7.6 Effect of pH
3.2.7.7 Effect of inoculam size
3.2.7.8 Effect of additives

3.3 Results and Discussion
   3.3.1 Determination of the presence of protease activity
   3.3.2 Production of alkaline protease

3.4 Conclusion

IV  Scale up processes for the production of thermostable alkaline protease from alkalophilic Bacillus sp. JB-99 under solid state fermentation

4.1 Introduction
   4.1.1 Process classification
   4.1.2 Aspects of design of fermenter for enzyme production in solid state fermentation
   4.1.3 Bioreactor types
      4.1.3.1 Tray fermenter
      4.1.3.2 Drum fermenter
      4.1.3.3 Column fermenter
      4.1.3.4 Miscellaneous types

4.2 Materials and Methods
   4.2.1 Microorganism
   4.2.2 Substrates
   4.2.3 Enzyme production and extraction in SSF
      4.2.3.1 Flask scale fermentation
      4.2.3.2 Tray scale experiments

4.3 Results and Discussion
   4.3.1 General conditions of the Solid State Fermentation
   4.3.2 Scale up studies
      4.3.2.1 Flask scale fermentation
      4.3.2.2 Tray scale fermentation

V  Partial purification and characterization of alkaline protease from alkalophilic Bacillus sp. JB-99 under SSF

5.1 Introduction
5.2 Materials and methods
   5.2.1 Chemicals and reagents
   5.2.2 Fermentation studies
      5.2.2.1 Inoculam preparation
      5.2.2.2 Mass cultivation of Bacillus sp. JB-99 for production of alkaline protease using koji fermentation
   5.2.3 Enzyme assay
   5.2.4 Estimation of protein
   5.2.5 Purification of alkaline protease
5.2.5.1 Ammonium sulphate precipitation
5.2.5.2 Ion exchange chromatography
5.2.5.3 Native PAGE Analysis for in situ detection of proteolytic activity
5.2.5.4 Activity detection by zymogram staining

5.2.6 Characterization studies
5.2.6.1 Effect of temperature on alkaline protease activity and thermo stability
5.2.6.2 Effect of pH on alkaline protease activity and stability
5.2.6.3 Effect of inhibitors, metal ions, surfactants, detergents and NaCl on alkaline protease activity and stability

5.3 Results and Discussion
5.3.1 Purification of alkaline protease
5.3.2 Characterization studies
5.3.2.1 Effect of temperature and pH on activity and stability profiles
5.3.2.2 Effect of inhibitors, metal ions, surfactants and sodium chloride on alkaline protease

5.4 Conclusion

VI Industrial applications of thermostable alkaline protease produced from alkalophilic Bacillus sp. JB-99 using SSF

6.1 Introduction
6.2 Materials and Methods
6.2.1 Organism
6.2.2 Chemicals, substrates and pelts
6.2.3 Mass cultivation of Bacillus sp. JB-99 for production of alkaline protease
6.2.3.1 Tray scale experiments
6.2.4 Application studies of alkaline protease from Bacillus sp. JB-99
6.2.4.1 Dehairing studies
   (a) Conventional paint method
   (b) Enzymatic paint method
   (c) Dip method
   (d) Spray method
6.2.4.2 Parameter studies for the optimization of unhairing of pelts
6.2.4.3 Histological studies and physical evaluation of crust leather
6.2.4.4 Washing test with protease preparation

6.3 Results and Discussion
6.3.1 Dehairation studies
6.3.1.1 Paint method
6.3.1.2 Dip method
6.3.1.3 Spray method
6.3.1.4 Effect of temperature on dehairation studies along with skin properties
6.3.1.5 Microscopic evaluation of the unhaired pelt
6.3.1.6 Physical Evaluation of depilated pelts
6.3.1.7 Washing tests with protease preparation (destaining technique)

6.4 Conclusion

VII Immobilization of alkalophilic Bacillus sp JB-99 for production of alkaline protease

7.1 Introduction
7.2 Materials and Methods
7.2.1 Chemicals and glass wares used
7.2.2 Preparation of inoculam
7.2.3 Measurement of cell concentration in sodium alginate beads
7.2.4 Sodium alginate entrapment of cells
7.2.5 Repeated batch fermentation
    7.2.5.1 Fermentation conditions for both free and immobilized cells
    7.2.5.2 Optimization of sodium-alginate concentration
    7.2.5.3 Optimization of medium pH
    7.2.5.4 Effect of different carbon and nitrogen sources
    7.2.5.5 Cell growth and cell leakage
7.2.6 Extraction of enzyme and assay
7.2.7 Microscopic examinations

7.3 Results
7.3.1 Measurement of cell concentration in sodium alginate beads
7.3.2 Effect of pH
7.3.3 Effect of alginate concentration
7.3.4 Effect of initial cell loading (ICL)
7.3.5 Comparison of protease production by Bacillus sp. JB-99 from free and immobilized cells
7.3.6 Reuse of the immobilized biocatalyst for alkaline protease production in repeated batch shake cultures.
7.3.7 Binocular Compound Microscopy (BCM) studies

7.4 Discussion

VIII Summary and Conclusion
Bibliography