LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Summary of the antiretroviral drugs along with their physicochemical and pharmacokinetic properties</td>
<td>7</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Key instances of commonly employed lipids, emulsifiers and cosolvents in the formulation of SNEOFs</td>
<td>17</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Various studies employed for characterization of the SNEOFs</td>
<td>20</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Recent instances of marketed products on the lipid-based self-emulsifying formulations</td>
<td>22</td>
</tr>
<tr>
<td>Table 1.5</td>
<td>Recent literature reports on bioavailability enhancement of drugs</td>
<td>23</td>
</tr>
<tr>
<td>Table 1.6</td>
<td>Recent literature instances of a variety of drugs loaded into liquid self-nanoemulsifying oily formulations</td>
<td>25</td>
</tr>
<tr>
<td>Table 1.7</td>
<td>Recent literature instances on various types of solid SEDDS</td>
<td>26</td>
</tr>
<tr>
<td>Table 1.8</td>
<td>Recent instances of nanocarriers employed to enhance the oral bioavailability of antiretroviral drugs</td>
<td>35</td>
</tr>
<tr>
<td>Table 1.9</td>
<td>Recent instances of nanocarriers employed to enhance the biodistribution of the antiretroviral drugs via oral and non-oral route</td>
<td>36</td>
</tr>
<tr>
<td>Table 1.10</td>
<td>Various studies employed for characterization of the SLNs/NLCs</td>
<td>38</td>
</tr>
<tr>
<td>Table 1.11</td>
<td>IVIVC in the light of BCS</td>
<td>43</td>
</tr>
<tr>
<td>Table 1.12</td>
<td>Comparison of OVAT and DoE methodology</td>
<td>45</td>
</tr>
<tr>
<td>Table 1.13</td>
<td>Experimental designs usually employed during QbD-based pharmaceutical product development</td>
<td>55</td>
</tr>
<tr>
<td>Table 1.14</td>
<td>Suitability of various optimization methods under variegated situations</td>
<td>58</td>
</tr>
<tr>
<td>Table 1.15</td>
<td>Recent instances on QbD-oriented development of lipid-based drug delivery systems</td>
<td>58</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Materials, chemicals and reagents used in the current research work</td>
<td>73</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>List of equipment/software employed during the current studies</td>
<td>75</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Quality target product profile for self-nanoemulsifying oily formulations of lopinavir</td>
<td>81</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Critical quality attributes for self-nanoemulsifying oily formulation of lopinavir and their justifications</td>
<td>81</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>CMAs and CPPs with their respective low and high levels screened for lopinavir SNEOFs employing FFD</td>
<td>84</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Fractional factorial screening design matrix as per seven factor two level</td>
<td>84</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Composition of various L-SNEOFs prepared as per the experimental design</td>
<td>86</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Quality target product profile for NLCs of lopinavir</td>
<td>103</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>Critical quality attributes for NLCs of lopinavir and their justifications</td>
<td>104</td>
</tr>
<tr>
<td>Table 3.10</td>
<td>Screening design as per eleven factors, two levels PBD</td>
<td>106</td>
</tr>
<tr>
<td>Table 3.11</td>
<td>Formulation and process variables with their respective high and low levels, investigated using PBD</td>
<td>106</td>
</tr>
<tr>
<td>Table 3.12</td>
<td>NLCs formulations prepared for selecting the factor levels</td>
<td>107</td>
</tr>
<tr>
<td>Table 3.13</td>
<td>Composition of various formulations prepared as per the experimental designs and translation of the coded levels employed for the optimization studies</td>
<td>109</td>
</tr>
<tr>
<td>Table 3.14</td>
<td>QTPP for self-nanoemulsifying oily formulations of darunavir</td>
<td>117</td>
</tr>
</tbody>
</table>
List of tables

Table 3.15: Critical quality attributes for self-nanoemulsifying oily formulation of darunavir and their justifications .. 118
Table 3.16: Formulation for SNEOFs with their respective low and high levels, investigated using Taguchi orthogonal array ... 120
Table 3.17: Screening design matrix as per 7-factor-2-level Taguchi .. 121
Table 3.18: Composition of various SNEOFs prepared as per the experimental design 122
Table 3.19: Quality target product profile for SLNs of darunavir ... 127
Table 3.20: CQAs for SLNs of darunavir and their justifications ... 128
Table 3.21: Formulation and process variables with their respective high and low levels investigated using FFD ... 129
Table 3.22: Screening design matrix as per five factors, two levels FFD 129
Table 3.23: Composition of various SLN formulations prepared as per the design matrix delineating the experimental design ... 131
Table 4.1: HPLC peak areas at various lopinavir concentrations for constructing the calibration plot ... 136
Table 4.2: Validation of accuracy for different concentrations of lopinavir 139
Table 4.3: Validation of system repeatability for lopinavir ... 140
Table 4.4: Validation for intra-day and inter-day precision .. 141
Table 4.5: Peak area of various concentrations of lopinavir employed for constructing the linear calibration plot ... 143
Table 4.6: Validation of accuracy for different concentrations of lopinavir 145
Table 4.7: Validation for intra-day and inter-day precision .. 145
Table 4.8: Extinction coefficient values for lopinavir in various solvents 146
Table 4.9: Accuracy in measuring a known concentration of lopinavir 148
Table 4.10: Validation for intra-day and inter-day precision .. 149
Table 4.11: Initial risk assessment for SNEOFs of lopinavir ... 155
Table 4.12: Enlisting of wave numbers for the characteristic peaks of lopinavir 158
Table 4.13: Summary of overall parameters of all the formulations prepared as per the experimental design *Formulations are prepared in duplicate 163
Table 4.14: Values of polynomial and correlation coefficients for CQAs of lopinavir SNEOFs ... 164
Table 4.15: Results of numeric optimization for SNEOFs of lopinavir 169
Table 4.16: Comparison of experimental responses with the predicted responses 170
Table 4.17: Mathematical drug release kinetic modeling results for the OPT-L-SNEOFs 177
Table 4.18: Various powder properties of porous carriers employed for the preparation of L-SNEOFs tablets ... 179
Table 4.19: Effect on the formulation parameters during the accelerated and long term stability studies .. 182
Table 4.20: Model fitness parameters of PK data using various weighting schemes 193
Table 4.21: Pharmacokinetic parameters obtained from plasma level studies after various oral treatments .. 196
Table 4.22: Abridged FMEA matrix enlisting the RPN scores for the selected formulation and process variables ... 202
Table 4.23: Particle size and drug entrapment efficiency of various formulations prepared to ascertain the factor levels .. 205
Table 4.24: Mean values of percent released, Ln (M_i/M_0) and rates of drug release at varied times for NLCs of lopinavir (L-NLC-1) prepared as per the BBD using blend of Compritol (300 mg), OA (100 mg), Tween 80 (6.5 g) ... 211
Table 4.25: Drug release and statistical parameters for each NLC formulation 211
Table 4.26: Mean values of percent released, Ln (M_i/M_0) and rates of drug release at varied times for NLCs of lopinavir (L-NLC-8) prepared as per the BBD using blend of Compritol (300 mg), OA (150 mg), Tween 80 (6.5 g) ... 212
Table 4.27: Drug release and statistical parameters for each NLC formulation 212
Table 4.28: Mean values of percent released, Ln (M_i/M_0) and rates of drug release at varied times for NLCs of lopinavir (L-NLC-11) prepared as per the BBD using blend of Compritol (300 mg), OA (125 mg), Tween 80 (5 g) ... 213
Table 4.29: Drug release and statistical parameters for each NLC formulation 213
Table 4.30: Mean values of percent released, Ln (M_i/M_0) and rates of drug release at varied times for NLCs of lopinavir (L-NLC-13) prepared as per the BBD using blend of Compritol (300 mg), OA (125 mg), Tween 80 (8 g) ... 214
Table 4.31: Drug release and statistical parameters for each NLC formulation 214
Table 4.32: Mean values of percent released, Ln (M_i/M_0) and rates of drug release at varied times for NLCs of lopinavir (L-NLC-2) prepared as per the BBD using blend of Compritol (450 mg), OA (150 mg), Tween 80 (5 g) ... 215
Table 4.33: Drug release and statistical parameters for each NLC formulation 215
Table 4.34: Mean values of percent released, Ln (M_i/M_0) and rates of drug release at varied times for NLCs of lopinavir (L-NLC-6) prepared as per the BBD using blend of Compritol (450 mg), OA (100 mg), Tween 80 (5 g) ... 216
Table 4.35: Drug release and statistical parameters for each NLC formulation 216
Table 4.36: Mean values of percent released, Ln (M_i/M_0) and rates of drug release at varied times for NLCs of lopinavir (L-NLC-3) prepared as per the BBD using blend of Compritol (450 mg), OA (125 mg), Tween 80 (6.5 g) ... 217
Table 4.37: Drug release and statistical parameters for each NLC formulation 217
Table 4.38: Mean values of percent released, Ln (M_i/M_0) and rates of drug release at varied times for NLCs of lopinavir (L-NLC-4) prepared as per the BBD using blend of Compritol (450 mg), OA (150 mg), Tween 80 (8 g) ... 218
Table 4.39: Drug release and statistical parameters for each NLC formulation 218
Table 4.40: Mean values of percent released, Ln (M_i/M_0) and rates of drug release at varied times for NLCs of lopinavir (L-NLC-12) prepared as per the BBD using blend of Compritol (450 mg), OA (100 mg), Tween 80 (8 g) ... 219
Table 4.41: Drug release and statistical parameters for each NLC formulation 219
Table 4.42: Mean values of percent released, Ln (M_i/M_0) and rates of drug release at varied times for NLCs of lopinavir (L-NLC-9) prepared as per the BBD using blend of Compritol (600 mg), OA (100 mg), Tween 80 (6.5 g) ... 220
Table 4.43: Drug release and statistical parameters for each NLC formulation 220
Table 4.44: Mean values of percent released, Ln (M_i/M_0) and rates of drug release at varied times for NLCs of lopinavir (L-NLC-5) prepared as per the BBD using blend of Compritol (600 mg), OA (125 mg), Tween 80 (5 g) ... 221
Table 4.45: Drug release and statistical parameters for each NLC formulation 221
Table 4.46: Mean values of percent released, Ln (M∞/M∞) and rates of drug release at varied times for NLCs of lopinavir (L-NLC-7) prepared as per the BBD using blend of Compritol (600 mg), OA (125 mg), Tween 80 (8 g) ... 222
Table 4.47: Drug release and statistical parameters for each NLC formulation.. 222
Table 4.48: Mean values of percent released, Ln (M∞/M∞) and rates of drug release at varied times for NLCs of lopinavir (L-NLC-10) prepared as per the BBD using blend of Compritol (600 mg), OA (150 mg), Tween 80 (6.5 g) ... 223
Table 4.49: Drug release and statistical parameters for each NLC formulation.. 223
Table 4.50: Summary of overall drug release parameters for all NLC formulations of lopinavir prepared using different combinations of Compritol, OA and Tween 80 as per the experimental design ... 224
Table 4.51: Coefficient values and statistical parameters obtained for polynomial equations for the studied CQAs .. 226
Table 4.52: Constraints and results of numeric optimization for lopinavir-loaded NLCs... 235
Table 4.53: Comparison of experimental results with predicted responses .. 236
Table 4.54: Mathematical drug release kinetic modeling for the optimized NLCs.. 240
Table 4.55: Effect of storage conditions and time on various formulation parameters of lopinavir-loaded NLCs .. 241
Table 4.56: Model fitness parameters of PK data using various weighting schemes ... 247
Table 4.57: Pharmacokinetic parameters obtained from plasma level studies after various oral treatments .. 251
Table 4.58: Statistical parameters for various mathematical models for Level A in vitro/ in vivo correlations .. 257
Table 4.59: Statistical parameters for Level B IVIVC .. 257
Table 4.60: Statistical parameters for multiple Level C IVIVC .. 259
Table 4.61: HPLC peak areas at various darunavir concentrations for constructing the linear calibration plot .. 262
Table 4.62: Validation of accuracy for different concentrations of darunavir .. 264
Table 4.63: Validation of system repeatability at different darunavir concentrations ... 265
Table 4.64: Validation for intra-day and inter-day precision .. 265
Table 4.65: Peak area of various concentrations of darunavir employed for constructing the linear calibration plot .. 267
Table 4.66: Validation of accuracy for different concentrations of darunavir .. 269
Table 4.67: Validation for intra-day and inter-day precision .. 270
Table 4.68: Extinction coefficient values for darunavir in various solvents .. 270
Table 4.69: Accuracy in measuring a known concentration of darunavir .. 272
Table 4.70: Validation for intra-day and inter-day precision .. 272
Table 4.71: Abridged FMEA matrix enlisting the RPN scores for the selected formulation and process variables .. 278
Table 4.72: Values of polynomial and correlation coefficients for CQAs of darunavir SNEOFs .. 284
Table 4.73: Results of numeric optimization for SNEOFs of darunavir .. 289
Table 4.74: Comparison of experimental responses with the predicted responses .. 292
Table 4.75: Mathematical drug release kinetic modeling for the OPT-D-SNEOFs .. 295
Table 4.76: Effect of the accelerated and long term stability on the formulation parameters 303
Table 4.77: Parameters evaluated optimization of cationic SNEOFs305
Table 4.78: Model fitness parameters of PK data using various weighting schemes309
Table 4.79: Pharmacokinetic parameters obtained from plasma level studies after various oral treatments ..311
Table 4.80: Risk estimation matrix for initial risk assessment for SLNs of darunavir317
Table 4.81: Coefficient values and statistical parameters obtained for the studied response variables..318
Table 4.82: Mean values of percent released, \(\ln \left(\frac{M_t}{M_\infty} \right) \) and rates of drug release at varied times for SLNs of darunavir prepared as per experimental design using Compritol (400 mg) and Tween 80 (3 g) (D-SLN-1)324
Table 4.83: Drug release and statistical parameters for each SLN formulation324
Table 4.84: Mean values of percent released, \(\ln \left(\frac{M_t}{M_\infty} \right) \) and rates of drug release at varied times for SLNs of darunavir prepared as per experimental design using Compritol (600 mg) and Tween 80 (3 g) (D-SLN-2)325
Table 4.85: Drug release and statistical parameters for each SLN formulation325
Table 4.86: Mean values of percent released, \(\ln \left(\frac{M_t}{M_\infty} \right) \) and rates of drug release at varied times for SLNs of darunavir prepared as per experimental design using Compritol (400 mg) and Tween 80 (6 g) (D-SLN-3)326
Table 4.87: Drug release and statistical parameters for each SLN formulation326
Table 4.88: Mean values of percent released, \(\ln \left(\frac{M_t}{M_\infty} \right) \) and rates of drug release at varied times for SLNs of darunavir prepared as per experimental design using Compritol (600 mg) and Tween 80 (6 g) (D-SLN-4)327
Table 4.89: Drug release and statistical parameters for each SLN formulation327
Table 4.90: Mean values of percent released, \(\ln \left(\frac{M_t}{M_\infty} \right) \) and rates of drug release at varied times for SLNs of darunavir prepared as per experimental design using Compritol (500 mg) and Tween 80 (4.5 g) (D-SLN-5)328
Table 4.91: Drug release and statistical parameters for each SLN formulation328
Table 4.92: Mean values of percent released, \(\ln \left(\frac{M_t}{M_\infty} \right) \) and rates of drug release at varied times for SLNs of darunavir prepared as per experimental design using Compritol (400 mg) and Tween 80 (4.5 g) (D-SLN-6)329
Table 4.93: Drug release and statistical parameters for each SLN formulation329
Table 4.94: Mean values of percent released, \(\ln \left(\frac{M_t}{M_\infty} \right) \) and rates of drug release at varied times for SLNs of darunavir prepared as per experimental design using Compritol (600 mg) and Tween 80 (4.5 g) (D-SLN-7)330
Table 4.95: Drug release and statistical parameters for each SLN formulation330
Table 4.96: Mean values of percent released, \(\ln \left(\frac{M_t}{M_\infty} \right) \) and rates of drug release at varied times for SLNs of darunavir prepared as per experimental design using Compritol (500 mg) and Tween 80 (3 g) (D-SLN-8)331
Table 4.97: Drug release and statistical parameters for each SLN formulation331
Table 4.98: Mean values of percent released, \(\ln \left(\frac{M_t}{M_\infty} \right) \) and rates of drug release at varied times for SLNs of darunavir prepared as per experimental design using Compritol (500 mg) and Tween 80 (6 g) (D-SLN-9)332
Table 4.99: Drug release and statistical parameters for each SLN formulation332
Table 4.100: Summary of overall drug release parameters for all SLNs of darunavir prepared using different combinations of Compritol and Tween 80 as per the experimental design ..333
Table 4.101: Values of polynomial and correlation coefficients for CQAs of darunavir SLNs 336
Table 4.102: Feasibility search for various CQAs of darunavir-loaded SLNs...............................342
Table 4.103: Grid search for various CQAs of darunavir-loaded SLNs ..343
Table 4.104: Results of numeric optimization for darunavir-loaded SLNs346
Table 4.105: Comparison of experimental results with predicted responses347
Table 4.106: Mathematical drug release kinetic modeling for the optimized SLNs (OPT-D-SLN) formulation..351
Table 4.107: Effect of storage conditions and time on various formulation parameters of darunavir-loaded SLNs ..352
Table 4.108: Model fitness parameters of PK data using various weighting schemes360
Table 4.109: Pharmacokinetic parameters obtained from plasma level studies after various oral treatments ..362
Table 4.110: Statistical parameters for various mathematical models for Level A in vitro/ in vivo correlations ..365
Table 4.111: Statistical parameters for Level B in vitro/ in vivo correlations366
Table 4.112: Statistical parameters for Level C in vitro/ in vivo correlations366
Table 4.108: Model fitness parameters of PK data using various weighting schemes369
Table 4.113: Pharmacokinetic parameters obtained from brain level studies after various oral treatments ..372