LIST OF FIGURES

Figure 1.1. Schematic representation of non-enzymatic glycation reaction and formation of advanced glycation end products (AGEs) and their role in the development of various complications such as retinopathy, nephropathy, neuropathy, vascular complications and skin aging..2

Figure 1.2. The structures of different sugars, early, intermediate and advanced glycation end products...4

Figure 1.3. The schematic representation of the different pathways involved in the formation and accumulation of AGEs..6

Figure 1.4. Different proteins modified due to glycation..9

Figure 1.5. The structure of serum albumin and its ligand binding sites.............12

Figure 1.6. Multiple functions of albumin...13

Figure 1.7. Lysine (blue) and arginine (yellow) residues in albumin.................15

Figure 1.8. The overall impact of glycation on albumin.....................................23

Figure 2.1. Gel electrophoretic pattern of normal and AGEs modified albumin...60

Figure 2.2. Lysine and arginine residues in BSA b) Schematic representation for the lysine modification to CML and CEL c) Arginine modification to Arg-P..61
Figure 2.3. Glycation propensity of lysine residues in BSA as determined using NetGlycate..62

Figure 2.4. UV absorbance and fluorescence emission spectra of native and AGEs modified BSA..63

Figure 2.5. CD spectra for native and AGEs modified albumin..65

Figure 2.6. Congo red binding for CML, CEL and Arg-P modified BSA..67

Figure 2.7. Residues in BSA with a high amyloid propensity as determined using FoldAmyloid. Amyloidogenic residues are shown in blue color and other residues in black color in a graph of amyloid propensity profile value versus residue number...68

Figure 2.8. Scanning electron micrographs for native and AGEs modified albumin aggregates...69

Figure 2.9. Transmission electron micrographs for the native (a) and AGEs modified forms of BSA (CML-BSA (b), CEL-BSA (c), Arg-P-BSA(d)). The scale bar shows 100 nm...70

Figure 2.10. Transmission electron micrographs of large and mature fibrils observed in case of CEL-BSA. The scale bar shows 100 nm.................................71

Figure 2.11. Confocal images for the native and AGEs modified albumin..72
Figure 3.1. AGEs modification of lysine and arginine for the formation of CEL and Arg-P...81

Figure 3.2. Structural superimposition of native (blue) and AGEs modified (yellow) BSA. Dotted arrows in black color indicate the major deviations in the modified structure from the native state. The AGEs modified arginine (R 194, 196, 198, 217, and 409 as Arg-P) and lysine (K 204 and 413 as CEL) residues have been represented as the ball and stick models in magenta color...91

Figure 3.3. Surface view of the drug binding site I (a) & (b) and site II (c) & (d) for native and AGEs modified form of BSA. Modified lysine and arginine residues in are shown with stick representation. The modification of arginine and lysine residues to Arg-P and CEL respectively resulted in the reduced accessibility and sallow pockets..93

Figure 3.4. Fluorescence spectra for native and AGEs modified BSA in the presence of increasing concentrations of IBP and TLB.........................95

Figure 3.5. The plot for Stern-Volmer constant (K_{sv}) and association constant (K_a) of native and AGEs modified form of BSA with tolbutamide and ibuprofen. (a) & (b) represents the graph for K_{sv} and K_a for binding of IBP whereas (c) & (d) represents graph for TLB interaction of BSA...97

Figure 3.6. Conformational changes in native BSA and AGEs modified BSA as determined by CD analysis...99

Figure 3.7. The binding energy of TLB and IBP for native and AGEs modified BSA as determined by molecular docking..100
Figure 3.8. The molecular interaction pattern of Tolbutamide (TLB) in drug binding site I of native and AGEs modified BSAs. (a) TLB bound in site I of native BSA (b) TLB bound in the site I of AGEs modified BSA ..101

Figure 3.9. The molecular interaction pattern of ibuprofen (IBP) in site II of native and AGEs modified BSA. (a) IBP bound in the drug site II of native BSA (b) IBP bound in the drug site II of AGEs modified BSA ..103

Figure 3.10. Scanning electron micrographs of normal red blood cells in the presence of native albumin. All the cells showed the normal discoid morphology..105

Figure 3.11. Scanning electron micrographs of RBCs in the presence of AGEs modified albumin with low (CMLL, CELL, Arg-P_L) and high (CMLH, CELH, Arg-P_H) level of AGEs modification. The damaged and spiked cells have been shown the figure using a red color arrow..106

Figure 3.12. Schematic representation for deleterious effects of AGEs modified albumin on red blood cells. RBCs in presence of native albumin exhibited normal discoid morphology whereas AGEs modified (Arg-P, CML, CEL) albumin exhibited deleterious effects leading to the abnormal morphological forms and severely damaged membrane..108

Figure 4.1. Structures of silybin, sinigrin, and vanillin..........................119

Figure 4.2. Structures of nine essential amino acids..........................122
Figure 4.3. Effect of silybin, sinigrin, and vanillin on early glycation (Amadori modification) of albumin..127

Figure 4.4. Effect of silybin, sinigrin, and vanillin on advanced glycation end products formation..129

Figure 4.5. Effect of silybin, sinigrin, and vanillin on carbonyl content...130

Figure 4.6. Effect of silybin, sinigrin and vanillin on lysine modification in albumin...131

Figure 4.7. Effect of silybin, sinigrin and vanillin on the conformation of BSA..132

Figure 4.8. Effect of silybin, sinigrin and vanillin on amyloid like aggregation of albumin..134

Figure 4.9. Confocal imaging of albumin aggregates in the presence and absence of nutraceuticals..135

Figure 4.10. Molecular interaction of silybin with albumin..136

Figure 4.11. Molecular interactions of sinigrin with albumin...137

Figure 4.12. Molecular interaction of vanillin with albumin...138
Figure 4.13. Schematic representation showing the antiglycation effect and chemical chaperon like function of vanillin by preventing conformational transition from α-helix to beta sheeted structure and aggregation of albumin. ..139

Figure 4.14. Effect of essential amino acids on early glycation product (Fructosamine). Results are means ± standard deviations of three different assays. ..141

Figure 4.15. Effect of essential amino acids on advanced glycation end products (AGEs). Results are means ± standard deviations of three different assays ..142

Figure 4.16. Effect of essential amino acids on protein bound carbonyl content. Results are means ± standard deviations of three different assays ..143

Figure 4.17. Effect of essential amino acids on lysine modification. Results are means ± standard deviations of three different assays ..144

Figure 4.18. Effect on essential amino acids on glycation induced fibrillation of albumin, a) CR binding b) Thioflavin T binding. Results are means ± standard deviations of three different assays ..145

Figure 4.19. Effect of essential amino acids on aggregation and fibrillation of albumin as determined from confocal imaging using ThT ...147
Figure 4.20. Effect of essential amino acids on the conformation of albumin...148

Figure 4.21. Binding energy of all nine essential amino acids as determined from molecular docking approach...149

Figure 4.22. The molecular interaction pattern of nine essential amino acids with albumin as determined from molecular modelling studies. Hydrogen bonds are represented with yellow color dashed lines...150