Chapter 3

Hydrothermal growth and PL investigation of ZnO nanoflowers

3.1 Introduction

ZnO is a wide band gap (3.37 eV) transparent semiconductor with attractive technological applications [196]. ZnO is a promising material for short wavelength optoelectronic devices, especially UV light-emitting diodes, LEDs and laser diodes due to its large exciton binding energy (60 meV) [57]. ZnO is a potential photocatalyst, has the advantage of lower cost, absorbing more light quanta and higher photocatalytic efficiencies for the degradation of several organic pollutants in both acidic and basic medium [197]. The preparation of crystalline ZnO with specific structures is crucial to explore its potential applications in depth [198]. ZnO nanostructures with different morphologies, such as flowerlike [199], nanorods [200], nanowires [201], nanobridges, nanonails [202], nano/micro-sized particles [203] and micro-tubes [204] can be synthesized by different methods. These nanostructures can be used as efficient gas sensors and also for the fabrication of photodiodes, photodetectors, solar cells
Photoluminescence investigation of hydrothermally grown ZnO nanoflowers and next generation UV sources [64]. ZnO nanostructures usually exhibit UV near band-edge (NBE) emission as well as defect level emission in the visible region [205]. Light-emitting properties and photocatalytic activity of ZnO nanostructures can be modified by changing its structural and morphological features [206]. It is a technologically important and challenging task to synthesize ZnO nanostructures at low cost to be used as UV generating sources. In this context, hydrothermal synthesis is a promising eco-friendly solution based method to grow different types of ZnO nanostructures. It is worth noting that Haiyong et al. have demonstrated the ability of a direct growth of ZnO nanoflowers on substrates using the hydrothermal method: GaN-based LED epiwafer and AlN that are grown on c-sapphire [207, 81].

Recently, flower-like ZnO nanostructures were identified to be a material of choice for fabricating low power consumption sensors because of its respond time (about 30 s) longer than that for sensors working at high temperatures [208]. Flower-like ZnO nanostructures (ZnO nanoflowers) proved their potential use as photoanode for dye-sensitized solar cells that enhanced the solar cell efficiency about 90% due to improved dye-loading and light harvesting [209]. On the other hand, Kim et al. [210] studied the field emission characteristics of the flower-like ZnO arrays for cold cathode emitter applications. ZnO nanoflowers exhibited excellent electron emission characteristics with a low turn-on field of 0.13 V\(\mu\)m\(^{-1}\) which was several orders of magnitude lower than that of 7.6 V\(\mu\)m\(^{-1}\) for the vertically aligned high density ZnO nanoneedles [210]. Furthermore, the light-emitting devices fabricated using these nanoflowers arrays as electron emitter demonstrated strong light emission, indicating that the luminescence originates from the electron emission from the ZnO nanoflower arrays. There are many studies reported on the growth of ZnO nanoflowers with a growth temperature ranging from 90 to 200 °C and reaction/growth time of 30 minute to 13 hours [207, 81, 211, 212, 213]. The re-
duction in reaction time is an important consideration with respect to a large scale production of nanomaterials for technological applications. However, in all the above mentioned studies the ZnO nanoflowers exhibited un-desirable green/visible emission related to the defect states in the ZnO nanostructures. Taking this into account, we have performed several experiments in order to optimize the growth condition of ZnO nanoflowers by a hydrothermal synthesis process with a short reaction time and low growth temperature in order to obtain flower-like ZnO nanostructures with minimum defect related emission. In this work, we report the synthesis and characterization of ZnO nanoflowers with enhanced UV emitting nature (with suppressed visible emission related to defect states in ZnO), grown by the hydrothermal method at an optimized growth temperature of 200 °C and a growth time of 3 hours.

3.2 Experimental

ZnO nanoflowers were synthesized by the reaction of Zn(CH$_3$COO)$_2$.2H$_2$O (0.1 M) and NaOH (1 M) under autogenous pressure, at a temperature of 200 °C for a growth time of 3 hours. The pH of the reaction solution was about 8. The entire reaction was carried out in a teflon lined sealed stainless steel autoclave. After the heating process, the autoclave was allowed to cool naturally to room temperature. As-collected resulting white precipitate was washed with distilled water, filtered and dried in air atmosphere at room temperature. The structural characterization of synthesized samples were carried out by a Rigaku (D.Max.C) X-ray diffractometer using Cu Kα radiation ($\lambda = 1.5414$ Å). X-ray photoelectron spectroscopy (XPS) measurement was carried out by using a Kratos AXIS Ultra spectrometer. The scanning electron microscope (SEM) images and energy-dispersive X-ray analysis (EDX) of the samples were taken using a Hitachi S-4800 SEM. The transmission electron microscopy (TEM),
high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) images of the sample was obtained with a JEOL JEM-2100 transmission electron microscope. Raman spectrum of the sample was recorded with a Horiba Jobin Yvon LabRam HR system with Ar-ion laser (514.5 nm) as the excitation source with a resolution better than 3 cm$^{-1}$. The UV-visible spectrum was recorded within the wavelength range 200-800 nm with a Jasco V-570 spectrometer. Room temperature photoluminescence (PL) of the samples were measured on a Horiba Jobin Yvon LabRam HR system with the He-Cd laser (325 nm) as excitation source.

3.3 Results and discussion

Figure 3.1 depicts the SEM images of the ZnO nanoflowers synthesized at an optimized growth temperature of 200 °C and a growth time 3 hours. The morphology of the ZnO nanoflowers here obtained are closely matched with that obtained by Zhang et al. [107] using the hydrothermal process and Chu et al. using the solution growth process [213]. The morphology of as-grown crystals is flowerlike and the petal-like parts constitute prismatic needle-shaped elongated crystallites. These petal-like elongated prismatic structures are closely packed around the center of the flower-like structure and have slightly reduced dimensions towards the unattached end. Each petal-shaped part has dimensions of about 234-347 nm in length and 77-106 nm in width. SEM images recorded from various regions of the sample exhibited the uniform morphology.

The TEM, HRTEM and SAED of the hydrothermally grown ZnO is shown in the figure 3.2. The TEM image shows that the average diameter of the individual nanorods constituting the ZnO nanoflower structures varies in the range ~90-280 nm and the corresponding aspect aspect ratio is about ~5-13 respectively. The HRTEM and SAED data of ZnO indicate the crystalline
Figure 3.1: SEM images of (a) ZnO nanoflowers synthesized by the hydrothermal method and (b) is a magnified image of the same sample.

nature of the sample. The HRTEM image also shows that the interplanar distance (d) is 0.25 nm for hydrothermally grown ZnO nanoflowers which is in good agreement with previously reported value.

The X-ray diffraction patterns/peaks recorded from the ZnO nanoflowers are indexed according to the typical hexagonal wurtzite structure of ZnO with space group P6\(_3\)mc (JCPDS: 36-1451) (Figure 3.3). The sample exhibited preferential orientation along the (1 0 0) plane. However, we can observe sharp diffraction peaks from the (1 0 1) and (0 0 2) plane indicating the good crystallinity and purity of the prepared sample. The X-ray diffraction peak along the (0 0 2) plane is indicative that growth of ZnO nanorods constituting the ZnO nanoflowers is in the c-axis orientation. The powder XRD patterns of samples were processed with the Rietveld refinement analysis in order to extract the lattice parameters using the FullProf program [214]. The Rietveld refinement profile of XRD patterns is shown in figure 3.4.

The values so obtained from the Rietveld analysis are \(a = 3.2499 \, \text{Å} \) and
Photoluminescence investigation of hydrothermally grown ZnO nanoflowers

Figure 3.2: TEM image of hydrothermally grown (a) ZnO, (b) HRTEM and SAED (inset) of ZnO

Figure 3.3: X-ray diffraction pattern of ZnO nanoflowers
Results and discussion

Figure 3.4: The Rietveld refinement profile of XRD data of ZnO nanoflowers

c = 5.2151 Å. These values are slightly different from the standard values of hexagonal ZnO: a = 3.2498 Å and c = 5.2066 Å (JCPDS: 36 -1451). The differences in lattice parameter observed from ZnO nanoflowers can be due to the surface stress on the nanostructures. This stress induces a lattice strain, leading to a lattice expansion, mainly in the c-direction, in order to relieve the strain [215, 216]. We can consider this as evidence that in ZnO nanoflowers grown by using the hydrothermal process, the stress relaxes elastically.

The elemental composition of the as synthesized sample is confirmed with EDX and XPS measurements. Figure 3.5 shows EDX and high-resolution XPS spectra of hydrothermally grown ZnO nanoflowers. The peaks at 531.1, 1021.9 and 1044.8 eV in the XPS spectra corresponding to the singlet of O1S and the doublet of Zn2P_{3/2} and Zn2P_{1/2}, respectively, can be attributed to the formation of hexagonal ZnO nanorods [217]. The atomic and weight percentage of elements of the sample obtained from EDX and XPS measurements are
Photoluminescence investigation of hydrothermally grown ZnO nanoflowers

Figure 3.5: a) EDX and b) XPS of spectra of hydrothermally grown ZnO nanoflowers shown in the table 3.1. The values which are obtained from EDX and XPS measurements are closely match to each other.

Table 3.1: The atomic and weight percentage of elements of the sample obtained from EDX and XPS measurements

<table>
<thead>
<tr>
<th>Elemental composition</th>
<th>EDX</th>
<th>XPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements</td>
<td>Atomic</td>
<td>Weight</td>
</tr>
<tr>
<td></td>
<td>percentage</td>
<td>percentage</td>
</tr>
<tr>
<td>Zn</td>
<td>42.70</td>
<td>76.23</td>
</tr>
<tr>
<td>O</td>
<td>43.19</td>
<td>18.86</td>
</tr>
</tbody>
</table>

The catalyst free growth of ZnO nanoflowers at low temperature depends on the other growth conditions. The physical and chemical nature of the sol-
vents is the key factor which influences the nucleation and the oriented growth process of ZnO materials [108]. The reaction between Zn(CH\textsubscript{3}COO\textsubscript{2}).2H\textsubscript{2}O and NaOH will give Zn(OH)\textsubscript{2} which is not stable with a heat treatment under autogenous pressure. Therefore, Zn(OH)\textsubscript{2} dissociates to Zn2+ ions and OH− ions, and the detachment of OH− radical may activate the nucleation centres. ZnO nuclei can be preferentially formed on the coalescent sites by the Coulomb interactions between Zn2+ ions and O− ions within the solution [107]. As the time of growth increases more ZnO molecules will be attached to the initially formed nucleation centres. On these individually formed nucleation centres, bundles of ZnO nanorods are aggregated in three dimensional array and flower-like morphology is developed.

Figure 3.6 depicts the Raman spectrum recorded from the ZnO nanoflowers at room temperature. In the Raman spectrum of the sample, a strong Raman active phonon band located at 437 cm−1 corresponds to E\textsubscript{2}(high) mode, whereas the suppressed bands of ZnO observed at 583 and 541 cm−1 are attributed to the E\textsubscript{1}(LO) mode and second order 2B\textsubscript{1}low; 2LA overtones, respectively [218, 219]. The weak bands are also seen in the Raman spectrum of hydrothermally grown ZnO nanorods at 330, 382, 541, and 583 cm−1 which are assigned in detail (Table 3.2). The Raman bands at 583 and 660 cm−1 are associated with structural disorders, such as oxygen vacancy, Zn interstitial etc. [220]. The presence of an intense E\textsubscript{2}(high) mode and a suppressed E\textsubscript{1}(LO) mode in the Raman spectrum indicates that the as synthesized ZnO nanoflowers are highly crystalline with a hexagonal wurtzite phase which is in agreement with X-ray diffraction results. Another three prominent Raman bands are observed at 99, 330 and 382 cm−1. Raman bands recorded from the ZnO nanoflowers are compared with the reported values of single crystal ZnO which are presented in table 3.2 [218].
Photoluminescence investigation of hydrothermally grown ZnO nanoflowers

The strong band observed E_2(high) at 437 cm$^{-1}$ is the intrinsic characteristic Raman active mode of wurtzite hexagonal ZnO [221]. The Raman bands at 99, 330 and 382 cm$^{-1}$ [218] corresponds to multiple phonon scattering processes of E_2(low), E_2(high)-E_2(low) and A_1(TO) modes, respectively. Raman bands observed in between 541 and 583 cm$^{-1}$ are associated with crystal structural disorders, such as oxygen vacancy, Zn interstitial and their combination [222, 223, 224]. It is to be noted that the Raman modes correspond to defect states (541 and 583 cm$^{-1}$) are very weak, pointing to the fact that the ZnO nanostructure obtained here, using the hydrothermal process are comparatively less number of optical active defects, which will demonstrate in the following section using the PL study.

Figure 3.7(a) depicts the reflectance spectrum recorded from ZnO nanoflow-
Table 3.2: Raman spectral data (cm\(^{-1}\)). (Note: w-weak; vw-very weak; s-strong; vs-very strong)

<table>
<thead>
<tr>
<th>Frequency (cm(^{-1}))</th>
<th>This work (ZnO nanoflowers)</th>
<th>Single crystal ZnO [218]</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>99 (s)</td>
<td>99</td>
<td>E(_2) (low)</td>
<td></td>
</tr>
<tr>
<td>205 (w)</td>
<td>203</td>
<td>2TA; 2E(_2) (low)</td>
<td></td>
</tr>
<tr>
<td>330 (w)</td>
<td>333</td>
<td>E(_2) (high)-E(_2) (low)</td>
<td></td>
</tr>
<tr>
<td>382 (w)</td>
<td>378</td>
<td>A(_1) (TO)</td>
<td></td>
</tr>
<tr>
<td>437 (vs)</td>
<td>438</td>
<td>E(_2) (high)</td>
<td></td>
</tr>
<tr>
<td>541 (vw)</td>
<td>536</td>
<td>2B(_1) (low); 2LA</td>
<td></td>
</tr>
<tr>
<td>583 (vw)</td>
<td>590</td>
<td>E(_1) (LO)</td>
<td></td>
</tr>
<tr>
<td>660 (w)</td>
<td>657</td>
<td>A(_1) (TA + LO)</td>
<td></td>
</tr>
</tbody>
</table>

ers. The optical absorption edge of ZnO nanoflowers appears at 384 nm which is red shifted by 11 nm relative to the bulk exciton absorption (373 nm) [225]. Correspondingly, the ZnO nanoflowers exhibited a lower optical energy gap of 3.23 eV with respect to bulk ZnO. The band gap of the flower-like ZnO nanostructure is estimated from \((k/s)h\nu\)^2 versus \(h\nu\) plot (Figure 3.7(b)), where ‘k’ and ‘s’ denote the absorption and scattering coefficients, and ‘\(h\nu\)’ is the photon energy [226]. The ratio of \((k/s)\) is calculated from the reflectance via the Kubelka Munk equation [227]. The reason for red shift in absorption edge/optical energy gap can be well explained as due to the oriented attachment of the nanorods and it has been specifically observed in ZnO with flower-like morphology [198]. From the X-ray diffraction analysis, we have seen that ZnO nanoflowers obtained using the hydrothermal process are strain relaxed, as evident from the enhanced lattice parameters ‘a’ and ‘c’. This in turn could
Figure 3.7: (a) Reflectance spectrum and (b) \([(k/s)\nu]^2 \) versus \(\nu \) plot of ZnO nanoflowers synthesized by the hydrothermal method.

incur a slight decrease in the band gap of the ZnO nanoflowers [228].

The room temperature PL spectrum under the excited wavelength of 325 nm of the as-prepared ZnO nanoflowers is shown in figure 3.8. The PL spectrum of the ZnO nanoflowers generally shows two emission bands, one is in the UV region at 392 nm, and an almost negligible blue band at 510 - 580 nm. The UV emission band at 392 nm pertains to the recombination of free excitons between the conduction and valence bands and is called the NBE emission (NBE), while the longer wavelength band can be attributed to the radial recombination of a photo-generated hole with electron, which belongs to the singly ionized oxygen vacancy [229]. The strong UV emission located at about 392 nm in the PL spectrum of the present sample indicates that, the ZnO nanoflowers have good crystal quality with few oxygen vacancies which corresponds to the self-activated luminescence [219]. The improvement in the crystal quality such as low structural defects, oxygen vacancies, zinc interstitials and decrease in the impurities. This may cause the appearance of sharper
Results and discussion

Figure 3.8: PL spectrum of ZnO nanoflowers at room temperature

and stronger UV emission with a suppressed and weakened green-red emission [230]. Moreover, the optical properties are also directly influenced by the morphologies and size of the final products [231]. The structure of flower-like ZnO has small size and large surface area which in turn contributes to intensity enhancement.

Chu et al. [213], in a study conducted on ZnO nanoflowers grown using the solution growth technique, observed an enhanced visible emission centred around \(\sim 550 \) nm over the UV emission with an increase in the random distribution of ZnO nanoflowers. The dominant visible emission observed (with respect to the UV emission) was explained due to the enhanced adsorbed oxygen, as a result of increased surface area of the random distributed ZnO nanoflowers. Similarly they observed a gradual decrease in the X-ray diffraction peak along the \((0 \ 0 \ 2)\) plane with increase in the random distribution of ZnO nanoflowers, which is evidence of degradation of the c-axis orientation.
Photoluminescence investigation of hydrothermally grown ZnO nanoflowers

of the ZnO nanorods constituting the flowers [213]. In the present case, we obtained randomly distributed ZnO nanoflowers morphology similar to that obtained by Chu et al. [213]. However, as synthesized ZnO nanoflowers exhibited negligible visible emission related to the defect states as compared with the UV emission centered at 392 nm. The X-ray diffraction pattern recorded from ZnO nanoflowers exhibited strong and sharp peak of ZnO along the (0 0 2) plane (Figure 3.3). This indicates that even though the ZnO nanoflowers are randomly distributed, the ZnO nanorods constituting the nanoflowers structure are oriented along the c-axis, which favours the growth of ZnO nanoflowers with minimal defects (adsorbed oxygen, oxygen vacancy, Zn interstitial). Similarly Raman analysis supported that the ZnO nanoflowers have minimum defect states, as observed from the suppressed Raman active modes at 541 and 583 cm$^{-1}$ respectively.

3.4 Conclusions

In summary, good crystalline ZnO nanoflowers with less optical active defects can be synthesized by a low-temperature hydrothermal method at a relatively low reaction time of 3 hours. The X-ray diffraction and Raman analysis confirmed the crystalline quality of the ZnO nanoflowers. The Rietveld refinement analysis of the X-ray diffraction data reveal that, stress relaxes elastically in ZnO nanoflowers grown using the hydrothermal process. This behavior is determined from the calculation of lattice parameters which indicate an expansion, mainly in the c-direction, of the ZnO nanoflowers. As synthesized ZnO nanoflowers exhibited an optical energy gap of 3.23 eV. The lower value of the observed band gap (with respect to the bulk ZnO) is attributed to the flower-like surface morphology and the expansion of lattice in order to relieve the lattice strain. The room temperature PL spectrum of ZnO nanoflowers
Results and discussion

shows a strong UV emission peak at 392 nm with a negligible visible emission related to the defect states as compared with the UV emission. The very weak Raman active modes at 541 and 583 cm\(^{-1}\) associated with the defect states in ZnO confirm the significant reduction of the optical active defects. Therefore, the ZnO nanoflowers grown using the hydrothermal process at an optimized growth temperature and growth time can be used as a good UV emitting source in light-emitting devices.
Photoluminescence investigation of hydrothermally grown ZnO nanoflowers