List of Figures

Figure 1.1 (a) Illustrations representing system dimensionality \(d \): (a) bulk semiconductors, 3D; (b) thin films, layer structures, quantum wells, 2D; (c) linear chain structures, quantum wires, 1D; (d) clusters, colloids, microcrystallites, nanocrystallites, quantum dots, 0D

Figure 1.1 (b) Densities \(N(E) \) of states for (a) 3D, (b) 2D, (c) 1D and (d) 0D systems (corresponding to ideal cases)

Figure 2.1 Furnace systems

Figure 2.2 Thermal evaporation system

Figure 2.2 a) Photograph of \(\text{SnO}_2 \) nanowires grown in the alumina boat
 b) SEM at the surface of the alumina boat-forming stand like structures for the further growth c) \(\text{SnO}_2 \) nanowires at the tip
d) XRD of pure \(\text{SnO}_2 \) nanowires

Figure 2.3 a) 50 b) 60 c) 75 d) 80 e) 85 A current for 30 minutes

Figure 2.4 SEM of \(\text{SnO}_2-\text{WO}_x \) in presence of a) \(5.5 \times 10^{-5} \) b) \(9 \times 10^{-5} \) c) \(7 \times 10^{-4} \) mbar **air**

Figure 2.5 SEM of \(\text{SnO}_2-\text{WO}_x \) in presence of a) \(5 \times 10^{-5} \) b) \(9 \times 10^{-5} \) c) \(5 \times 10^{-4} \) mbar **oxygen**

Figure 2.6 a) 5 b) 15 c) 30 minutes deposition

Figure 2.7 Grazing angle XRD of the sample

Figure 2.8 XPS of \(\text{SnO}_2-\text{WO}_x \) hierarchical nanoheterostructures

Figure 2.9 Uv-Vis absorption spectra of \(\text{SnO}_2-\text{WO}_x \) hierarchical heterostructures in the inset. spectrum plotted as \((ahv)^2\) versus energy.

Figure 2.10 TEM image of the sample a) \(\text{SnO}_2-\text{WO}_x \) hierarchical heterostructures b) HRTEM image at the junction
Figure 2.11 Single hierarchical nanoheterostructure wire

Figure 2.12 Response of mat type sensor films at room temperature on exposure to 8 ppm concentration gas. Pure SnO$_2$ films exposed to a) H$_2$S and b) Cl$_2$. SnO$_2$/WO$_x$ heterostructures films exposed to c) H$_2$S and d) Cl$_2$. WO$_x$ films e) 20 ppm H$_2$S sensing f) 1ppm Cl$_2$ sensing.

Figure 2.13 Current as a function of time for single wire SnO$_2$/WO$_x$ heterostructure sensor on exposure to a) 0.5 ppm b) various concentrations of Cl$_2$ gas at room temperature.

Figure 2.14 Growth mechanism of the hierarchical nanoheterostructures.

Figure 2.15 Band diagram (a) isolated W$_{18}$O$_{49}$ and Sn$_0$2 materials and (b) the corresponding heterojunction band structure for an ideal interface (i.e. charge exchange is Fermi level mediated). Ideal charge exchange results in the formation of a Macroscopic negative dipole as indicated. Region A has enhanced electron density in SnO$_2$ and region B has reduced electron density in W$_{18}$O$_{49}$. Region A with enhanced electron density may cover full nanowires as typical depletion layer width exceeds nanowire thickness.

Figure 3.1 Schematic of thermal vapor deposition system

Figure 3.2 SEM of 100Å thick film at 500-850°C substrate temperature.

Figure 3.3 SEM of Cu film on Silicon substrates a) 20Å Si(111) b) 150Å Cu on Si(111) c) 100 Å Cu on Si (100) d) Magnified image of various structures of 20 Å Cu film on Si(100) e) 100 Å Cu film on Si(110) f) magnified image of 100 Å Cu film on Si(110) at 750 °C substrate temperature.

Figure 3.4 275 Å thick film of copper post annealed at 750 °C on a) Si(111) b) Si(100) c) Si(110)

Figure 3.5 SEM for thickness range of 10-1000 Å of Cu

Figure 3.6 CuSi patterns at higher deposition rate
Figure 3.7 AFM images of the samples
Figure 3.8 XPS of a) Cu2P3/2 b) Si 2P peak
Figure 3.9 XRD image of the CuSi structures on Si orientations
Figure 3.10 a) TEM image of the nanopattern b) HRTEM image of the CuSi structures c) HRTEM image of Copper pattern on Si(111) surface
Figure 3.11 FEM studies of CuSi nanostructures on Si(110) substrates
 a) I-t plot, b) JEplot c) FEM plots observed on sample d)FN plot
Figure 3.12 Schematic representation of CuSi growth on Si(110) substrate.
Figure 3.13 a) SEM of carbon structures on CuSi structures b) Raman spectra of carbon structures
Figure 4.1a) Electrochemical cell to synthesize metal nanoparticles
 b) Formation of electrochemically grown TOAB capped metal nanoparticles.
Figure 4. 2 Experimental setup for measurement of relative humidity
Figure 4.3a) TEM images of the samples b) Electron Diffraction pattern
Figure 4.4a) Ag pure and b) Ag-Polyaniline nanocomposite for variable sizes of Ag
Figure 4.5 Uv-Vis absorption spectrum of a) Ag nanoparticles b) Ag nanorods c) pictorial representation of absorption spectra.
Figure 4.6 Uv–Vis spectra of Ag-Polyaniline nanocomposite with Ag Particle size variation.
Figure 4.7 SEM of rod shaped silver nanoparticles
Figure 4.8 Scanning Electron Micrograph (SEM) of Ag-Polyaniline nanocomposites for different Ag particle sizes (nm): a) 15 b) 18 c) 21 d) 24 and e) 30.
Figure 4.9 Humidity response of Ag-Polyaniline nanocomposite for 2–8 mm clad lengths
Figure 4.10 Humidity response of Ag-Polyaniline nanocomposite for
variable Ag particle sizes (15–30 nm) in polymeric composite for fixed clad length of 6 mm

Figure 4.11 Humidity response for variable particle sizes of Ag in Polyaniline nanocomposite at 5 %RH

Figure 4.12 Hysteresis curve of Ag-Polyaniline nanocomposite having 15nm Ag particle size

Figure 4.13 a) Home made experimental setup for humidity sensing b) coated film resistor c) circuit diagram for measuring resistance

Figure 4.14 Uv-Vis absorption a) Au-PVP b) Ag-PVP

Figure 4.15 XRD spectra of a) Au-PVP b) Ag-PVP nanocomposite

Figure 4.16 a) Sensitivity curve for Au-PVP and Ag-PVP films with layer 1 b) sensitivity bar chart

Figure 4.17 Humidity response curve for 1-6 layer films of a) Au-PVP b) Ag-PVP

Figure 4.18 Water absorption capacity of a) Au-PVP sample b) Ag-PVP

Figure 4.19 SEM of Au-PVP samples with a) one- to f) six layer thickness Sample

Figure 4.20 SEM of Ag-PVP samples with a) one- to f) six layer thickness

Figure 4.21 Sensitivity of a) Au-PVP nanocomposite and Ag-PVP

Figure 4.22 Repeatability curve of a) Au-PVP b) of Ag-PVP film

Figure 4.23 The adsorption phenomena of water molecules on film a) At lower humidity (surface adsorption) b) At intermediate humidity (adsorption on capillary walls) c) At higher humidity (full capillary condensation)

Figure 4.24 Sensitivity curves for one to six layer thickness of Au-PVP nanocomposite

Figure 4.25 Sensitivity curves for one-six layer thickness of Ag-PVP nanocomposite

Figure 4.26 a) Ag-Au core shell nanoparticles b) EDAX data of the sample.

Figure 4.27 Uv-Vis absorption spectra of Ag core Au shell in PVP matrix
Figure 4.28 XRD spectra of Ag-Au core shell particles in PVP

Figure 4.29 a) Sensitivity curves for one layer thick films of core–shell structures b) Sensitivities for one layer thick films

Figure 4.30 Ag core Au shell-PVP nanocomposites a) partial humidity Range b) full humidity range

List of Tables

Table 3.1 Result table of CuSi structures

Table 4.1 Au-PVP sensitivity in three regions

Table 4.2 Ag-PVP sensitivity over three regions