Expert Systems such as Mycin, Dendral, Prospector, Caduceus, etc., proved to be successful in early eighties. In late eighties success of the Neural Network (NN) approach to problems such as learning to speak [Sejnowski and Rosenberg 1986], medical reasoning [Gallant 1988], recognizing handwritten characters, [Mui and Agarwal 1993; Baxt 1992; Wang 1991; Bottan and Vapnik 1992; Hoffman et al. 1993; Nagendra Prasad et al. 1993] etc., gave a new impetus to research in Neural Computing. The neural network approach has been an increasingly important approach to artificial intelligence [Feldman and 3allard 1982; Rumelhart et al. 1986; Smolensky 1987; Feldman et al. 1988]. The Neural Network approach is being applied to difficult, A.I. problems. Fu and Fu [1990] suggested a novel approach wherein a rule-based conventional expert system was mapped into a neural architecture in both the structural and behavioral aspects. It was suggested that the NN approach can enhance the performance of Conventional Expert Systems (CES).

The Neural Network approach contrasts with the knowledge-based approach in several aspects. The knowledge of a neural network lies in its connections and associated weights, whereas the knowledge of a rule-based system lies in rules. A neural network processes information by propagating and combining activations through the network, but a knowledge-based system (Fig. 1) reasons through symbol generation and pattern matching. The knowledge-based
approach emphasizes knowledge representation, reasoning strategies and the ability to explain, whereas the neural network approach does not. The key differences between these two approaches are summarized in Table 1.

![Figure 1. The basic components of a knowledge-based system.](Image)

Source: Fu and Fu 1990

<table>
<thead>
<tr>
<th></th>
<th>Neural network approach</th>
<th>Knowledge-based approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>Connections</td>
<td>Rules</td>
</tr>
<tr>
<td>Computation</td>
<td>Numbers</td>
<td>Numbers, symbols,</td>
</tr>
<tr>
<td></td>
<td>Summation and</td>
<td>pattern matching</td>
</tr>
<tr>
<td></td>
<td>thresholding</td>
<td>Complicated, various</td>
</tr>
<tr>
<td></td>
<td>Simple, uniform</td>
<td></td>
</tr>
<tr>
<td>Reasoning</td>
<td>Non-strategic</td>
<td>Strategic</td>
</tr>
<tr>
<td>Tasks</td>
<td>Signal level</td>
<td>Knowledge level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1 Mapping Rule-based Systems into Neural Architecture

A rule-based system (knowledge represented in rules) can be transformed into an inference network where each connection corresponds to a rule and each node corresponds to the premise or the conclusion of a rule, as seen in Figure 2. Reasoning in such systems is a process of propagating and combining multiple pieces of evidence through the inference network until final conclusions are reached. Uncertainty is often handled by adopting the certainty factor (CF) or the probabilistic schemes which associate each fact with a number called the belief value. An important part of reasoning tasks is to determine the belief values of the pre-defined final hypothesis given the belief values of observed evidence. The network of an inference system through which belief values of evidences or hypotheses are propagated and

\[\text{Figure 2. An inference network.} \]

\text{Source: Fu and Fu 1990}
combined is called the belief network. Correspondence in structural and behavioral aspects exists between neural networks and belief networks, as shown in Table 2. For instance, the summation function in neural networks corresponds to the function for the Bayesian formula for deriving posterior probabilities in PROSPECTOR-like systems. The thresholding function in neural networks corresponds to predicates such as SAME (in Mycin-like systems), which cuts off any certainty value below 0.2.

<table>
<thead>
<tr>
<th>Neural networks</th>
<th>Belief networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections</td>
<td>Rules</td>
</tr>
<tr>
<td>Nodes</td>
<td>Premises, conclusions</td>
</tr>
<tr>
<td>Weights</td>
<td>Rule strengths</td>
</tr>
<tr>
<td>Thresholds</td>
<td>Predicates</td>
</tr>
<tr>
<td>Summation</td>
<td>Combination of belief values</td>
</tr>
<tr>
<td>Propagation of activations</td>
<td>Propagation of belief values</td>
</tr>
</tbody>
</table>

Since belief network corresponds to neural network by mapping the knowledge base and the inference engine into a kind of neural network called conceptualization, which stores knowledge and performs inference and learning. Furthermore, to construct a conceptualization, the following mappings need to be done.

- Final hypotheses are mapped into output neurons (neurons without connections pointing outside),
- Data attributes are mapped into input neurons (neurons without connections pointing outwards),
• Concepts that summarize or categorize subsets of data or intermediate hypotheses that infer final hypotheses are mapped into middle (also known as hidden) neurons, and

• The strength of a rule is mapped into the weight of the corresponding connection.

If there are no data errors, input neurons can represent both the observed and the actual data. In case of possible data errors, the observed data and the actual data are represented by two different levels of neurons, with a connection established between each observed and actual input neurons referring to the same data attribute. One example is shown in Figure 3, where for instance, observed input neuron E_i corresponds to actual input neuron E'_i.

Figure 3. Organization of the knowledge-base and input data as a neural network.
3.2 Knowledge Representation

In this section the knowledge representation language in MYCIN [Buchanan and Shortliffe 1934] or similar systems is reviewed. The issue of how to map such language into conceptualization is then examined, and knowledge representation of the neural network is described.

In MYCIN, facts are represented by context-attribute (or object-attribute-value) triples. Each triple is a term. For instance, the term 'throat' which is the site of the culture is represented by the triple `<CULTURE SITE THROAT>`. Each triple is associated with certainty factor, which is described later.

A sentence is represented by predicate-context-attribute-value quadruple. For instance, the sentence 'the site of the culture is throat' is represented by quadruple `<SAME CULTURE SITE THROAT>`. The truth value of a sentence is determined by whether the triple satisfies the predicated in terms of its CF.

Judgmental and inferential knowledge is represented in production rules; i.e., if-then rules. If a rule's IF-part is evaluated to be true, its THEN part will be concluded. Each part is constituted by a small number of sentences. For instance, a MYCIN rule.

*RULE 12 4
IF:
1. The site of the culture is throat.
2. The identity of the organism is Streptococcus.
THEN: There is strongly suggestive evidence (.8) that the subtype of the organism is not group-D.
can be encoded in **MYCIN** language as

*(RULE 124 ((\$AND(SAME CULTURE SITE THROAT)
(SAME ORGANISM IDENTITY STREPTOCOCCUS))
((CONCLUDE ORGANISM SUBTYPE GROUP-D -.8))))

Certainty factors are integers ranging from -1.0 to 1.0. A minus number indicates disbelief whereas a positive number indicates belief. The degree of belief or disbelief parallels the absolute value of the number. The extreme values -1.0 & 1.0 represent 'No' and 'Yes' respectively. A triple is associated with a CF indicating the current belief in the triple. A rule is assigned a CF representing the degree of disbelief in the conclusion given the premise is true. For instance, the CF of RULE in the example above is -0.8. The CF of a conclusion based upon rule can be computed by multiplying the CF of the premise and the CF of the rule. Each sentence or condition in the premise on evaluation will return a number ranging from 0 to 1.0 representing the CF of the sentence. The CFs of all conditions in the premise are combined to result in the CF of the premise. As in the fuzzy set theory, \$AND returns the minimum of the CFs of its arguments. CFs of a fact due to different pieces of evidence are combined according to certain formulae.

A sentence in the rule language is mapped into a concept node (a node in the conceptualization). Mapping at this level of abstraction can capture the analogies between a belief and a neural network shown in Table 2. Mappings at lower levels, such as mapping a word in a sentence into a concept node lack a good justification.
Suppose the premise of a rule involves conjunction, then each sentence in the premise is mapped into a concept node. These concept nodes then lead into another concept node representing the conjunction.

The CF of a sentence is mapped into the activation level of the concept node designated by the sentence. The CF of a rule is mapped onto the weight of the connection between the two concept nodes, one designated by the premise and the other by the conclusion of the rule.

A neural network is a directed graph where each arc is labeled with a weight. Therefore, it is defined by a two-tuple \((V,A)\), where \(V\) is a set of vertices and \(A\) is a set of arcs. The knowledge of a neural network is stored in its connections and weights. The data structure to represent a neural network should take into account how to use its knowledge. Here the scheme used to represent a neural network will be described.

Assume that the network is arranged as multiple layers. Each layer contains a certain number of nodes (processing elements). A node receives input from some other nodes which feed into the node. If node \(A\) leads into node \(B\), we say that node \(A\) is adjacent to node \(B\) and node \(B\) is adjacent to node \(A\). There is one list from each node in the network. The members in list \(i\) represent the nodes that are adjacent to node \(i\). To make the access to these lists fast, all the nodes are stored in an array where each node points to the list associated with it, as shown in Figure 4. This scheme is known as 'inverse adjacency lists' in graph theory. Connection weights are stored in properly defined data fields in the adjacency lists. Since the activation level at a given node is computed based on the activations at the nodes adjacent to the node, inverse adjacency lists offer
computational advantages. By contrast, the scheme of adjacency lists which contain nodes adjacent from a given node is useful for back-propagation.

3.3 Inference

Inference in most rule-based systems is to deduce the CFs of pre-defined hypotheses from given data. Such systems have been applied successfully to several types of problems such as diagnosis, analysis, interpretation and prediction. **MYCIN** uses a goal-oriented strategy to make inference. This means it invokes rules whose consequents deal with the given goal and recursively turns a goal into subgoals suggested by the
antecedents of rules. By contrast, a system which adopts a data-driven strategy will select rules whose antecedents are matched by the database. Despite the difference between the rule selection between these two strategies, inference in rule-based system is a process of propagating and combining CFs through the belief network. Since inference in the neural network involves a similar process, with CFs replaced by activation levels, the formulae for computing CFs can be applied to compute the activation level at each concept node in the conceptualization.

If a rule-based system involves circularity (cyclic reasoning), then inference in the neural networks mapped by such a system is characterized by not only propagation and combination of activations but also iterative search for a stable state, if it converges, in an extremely short period of time measured at the unit si the time constant of the neural circuit.

The inference capability of the neural network is derived from the collective behavior of simple computational mechanisms at individual nodes. The output of a node is a function of the weighted sum of its inputs. In a biological neuron, if and only if its input exceeds a certain threshold, the neuron will fire. For an artificial neuron, continuous non-linear transfer functions such as the sigmoid function and non-continuous ones such as threshold logic have been defined. A neural network is often arranged as single-layered or multi-layered, and is organized as feedforward or with collateral or recurrent circuits. Different architectures are taken in accordance with the problem characteristics.

In a feedforward neural network as discussed in the previous chapter the inference behavior is characterized by
propagating and combining activations successively in the forward direction from input to output layers. Collateral inhibition and feedback mechanisms are implemented using collateral and recurrent circuits, respectively. They are employed for various purposes. For instance, the winner-take-all strategy can be implemented with collateral inhibition circuits. Feedback mechanisms are important in adaptation to the environment. As to the layered arrangement, multi-layered neural networks are more advantageous than single-layered networks in performing non-linear classification. This advantage stems from the non-linear operation at the hidden nodes. For instance, exclusive-OR can be simulated by a bi-layered neural network but not by any single-layered one. The principle of maximum information preservation (informax principle) has been proposed for information transformation from one layer to another in a neural network [Linsker 1988]. This principle can shed light on the design of a neural network for information processing.

The inference tasks performed by the neural network generally fall into four categories: pattern recognition, association, optimization and self-organization. A single-layered network can act as a linear discriminant, whereas a multi-layered network can be an arbitrary non-linear discriminant. Association performed by the neural network is content-directed allowing incomplete matching. Optimization problems can be solved by implementing cost function as neural circuits and optimizing them. Self-organization is the way the neural network evolves unsupervisedly in response to environmental changes. Clustering algorithms can be implemented by neural networks with self-organization abilities. (See previous chapter for details).
Mycin-like expert systems will be mapped into neural networks which are in general feedforward and multilayered, and perform tasks close to pattern recognition. By capitalizing on all inference capabilities of neural networks, it is possible to develop expert systems more versatile than the existing ones.

3.4 Learning

Learning in the conceptualization is the process of modifying connection weights to achieve correct inference behavior. The following will show how to apply the back-propagation rule to learn and how to revise rules and/or data on the basis of the results through learning.

In a knowledge-based system, the issue of learning deals with acquiring new knowledge and maintaining integrity of the knowledge base. The knowledge base is constructed through a process called knowledge engineering (encoding of expert knowledge) or through machine learning.

When errors are observed in the conclusions made by a rule-based system, an issue is raised of how to identify and correct the rules or data responsible for these errors. The problem of identifying the sources of errors is known as the blame assignment problem.

Previous approaches [Poitakis 1982; Suwa et al. 1984; Wilkins and Buchanan 1986] only focus on how to revise a rule-based system. Among these TEIRESIAS [Davis 1976] is a typical work. It maintains the integrity of knowledge base by interacting with experts. However, as the size of the knowledge base grows, it is no longer feasible for human
experts to consider all possible interactions among knowledge in a coherent and consistent way. TMS [Doyle 1979] resolves inconsistency by altering a minimal set of beliefs, but it lacks the notion of uncertainty in the method itself. Symbolic machine learning techniques such as the RL program [Fu 1985] can learn and debug knowledge but in general do not address the case when the knowledge involves intermediate concepts which are not used to describe the training samples.

TEIRESIAS may be confronted with the following problems. First, incorrect conclusions may be due to data errors. Second experts know the strengths of inference for each individual rule, but it may be difficult for them to determine the rule strengths in such a way that dependencies among rules are carefully considered to meet the system assumptions. For instance, in MYCIN, since certainty factors are combined under the assumption of independence, the certainty factors assigned to two dependent rules should be properly adjusted so as to meet this assumption.

3.4.1 Back Propagation of Error

An error refers to the disagreement between the belief values generated by the system and that indicated by a knowledge source assumed to be correct (e.g., an expert) with respect to some fact. The back propagation rule developed in the neural network approach [Rumelhart et.al 1986] is a recursive heuristic which propagates backwards errors at a rule to all nodes pointing to that node, and modifies the weights of connections heading into nodes with errors. First we will restrict our attention to single-layered networks involving only input and output neurons.

In each inference task, the system arrives at the belief values of final hypotheses given those of input data. The
belief values of input data form an input pattern (or an input vector) and those of final hypotheses form an output pattern (or an output vector). **System** error refers to the case when incorrect output patterns are generated by the **system**. When the system error arises, we use the instance consisting of the input pattern given for inference and the correct output pattern to train the network. The instance is repeatedly used to train the network until a satisfactory performance is reached. Since the network may be incorrectly trained by that instance, we also maintain a set of reference instances to monitor the learning process. This reference set is consistent with the knowledge base. If, during learning, some instances in the reference instances set **become** inconsistent, they will be added to the learning process.

On a given trial, the network generates an output vector given the vector of the training instance. The discrepancy obtained by subtracting the network's vector from the desired output vector serves as the basis for adjusting the strengths of the connections involved. The back-propagation rule adapted from [Rumelhart et al. (1986)] is formulated as follows.

\[
\Delta W_{ji} = rD_j \frac{dO_j}{dW_{ji}}
\]

where \(D_j = T_j - O_j\), \(\Delta W_{ji}\) is the weight (strength) adjustment of the connection from input node \(i\) to the output node \(j\), \(r\) is a trial independent learning rate, \(D_j\), is the discrepancy between the desired belief value \((T_j)\) and the network's belief value \((O_j)\) at node \(j\), and the term \(dO_j /dW_{ji}\) is the derivative of \(O_j\) with respect to \(W_{ji}\). According to this rule the magnitude of weight adjustment is proportional to the product of the discrepancy and the derivative above.
The back-propagation rule is applicable to belief networks where the propagation and the combination of belief values are determined by \textit{differentiable} mathematical functions. As shown in equation (1), the mathematical requirement for applying the back-propagation rule is that the relation between the output activation \((O_i)\) and the input weight \((W_{ij})\) is determined by a \textit{differentiable} function. In belief networks, this relation is \textit{differentiable} if the propagation and the combination functions are \textit{differentiable}. Since combining belief values in most rule-based systems involves such logic operations as conjunction or disjunction, the back-propagation rule is applied after turning the conjunction operator into multiplication and the disjunction operator into summation.

A multi-layered network [Jones and Hoskins 1987] involves at least three levels; one level of input nodes one level of output nodes and one or more levels of middle nodes. Learning in a multi-layered network is more difficult because the behavior of the middle nodes is not directly observable. Modifying the strengths of the connections pointing to a middle node entails the knowledge of the discrepancy between the network's value and the desired belief value at the middle node. The discrepancy at a middle node can be derived from the discrepancies at output nodes which receive activations from the middle node. It can be shown that the discrepancy at middle node \(j\) is defined by

\[
D_j = \sum_k \left(\frac{dO_j}{dO_i} \right) D_k
\]

where \(D_k\) is the discrepancy at node \(k\). In the summation, each discrepancy \(D_k\) is weighted by the strength of the connection pointing from middle node \(j\) to node \(k\). This is a recursive definition in which the discrepancy at a middle
node is always derived from discrepancies at nodes at the next higher level.

3.4.2 Distinguishing Knowledge-base from Input Data Errors

A method has been devised that can distinguish knowledge base errors from input data errors. This method includes three tests. In the first test, we clamp all connections corresponding to the knowledge base so that only the strengths of the connection between the observed and the actual input data nodes remain adjustable during learning. In the second test, we clamp the connections between the observed and the actual inputs and allow only the strengths of the connections corresponding to the knowledge base to be modified. In the third test, we allow the strengths of all connections to be adjusted. In each test, success is reported if the error concerned can be resolved after learning; failure is reported otherwise. Consequently there are eight possible outcomes as shown in Table 3. Outcome 01 suggests the revision of either the knowledge base or output.

<table>
<thead>
<tr>
<th>Test1</th>
<th>Test2</th>
<th>Test3</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>S</td>
<td>S</td>
<td>01</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>F</td>
<td>02</td>
</tr>
<tr>
<td>S</td>
<td>F</td>
<td>S</td>
<td>03</td>
</tr>
<tr>
<td>S</td>
<td>F</td>
<td>F</td>
<td>04</td>
</tr>
<tr>
<td>F</td>
<td>S</td>
<td>S</td>
<td>05</td>
</tr>
<tr>
<td>F</td>
<td>S</td>
<td>F</td>
<td>06</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>S</td>
<td>07</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>08</td>
</tr>
</tbody>
</table>

S = success, F = failure
data. In this case, an expert's opinion is needed to decide, which should be revised. Outcome 02 is ignored. Outcome 03 suggests the revision of output data. Outcome 04 is unlikely and is ignored. Outcome 05 suggests the revision of the knowledge base. Outcome 06 is also unlikely and is ignored. Outcome 07 suggests the revision of both the knowledge base and data. Outcome 08 is a deadlock which demands an expert to resolve.

3.4.3 Revision Operations

The revision of the above tests will indicate whether the knowledge base or input data (or both) should be revised. The strengths of the connections in the network (representing the knowledge base and input data) have been revised after learning. The next question is how to revise the knowledge base and/or input data according to the revisions made in the network. The revision of the knowledge base will be dealt with first.

Basically, there are five operators for rule revision:

- modification of strengths
- deletion
- generalization,
- specialization, and
- creation

However not all the five operators are suitable in the neural network approach to editing rules. Each operator is examined below.

The modification of operator strengths is straightforward since the strength of a rule is just a copy of the weight of the corresponding connection and the weights of
connections have been modified after learning with the back-propagation rule. If the weight change is trivial, we just keep the rule strength before learning.

The deletion operator is justified by Theorem 1.

Theorem 1: In a rule-based system if the following conditions are met:

1. the belief value of the conclusion is determined by the product of the belief value of the premise and the rule strength.

2. the absolute value of any belief value and the rule strength is not greater than 1, and

3. any belief value is rounded off to zero if its absolute value is below threshold \(k \) (\(k \) is a real number between 0 and 1).

then the deletion of rules with strengths below \(k \) will not affect the belief values of the conclusions arrived at by the system.

Proof: From condition 1 and 2 if the strength of rule R is below \(k \), the belief value of its conclusions is always below \(k \). From condition 3, the belief value of the conclusion made by rule R will always be rounded off to zero. Since rule R is not effective in making any conclusion, it can be deleted. Thus the deletion of such rules as rule R will not affect the system conclusions.

Accordingly deletion of rule is indicated when its absolute strength is below the predetermined threshold. In MYCIN-like system, the threshold is 0.2
The deletion operator is also justified by the following argument. Suppose we add some connections to a neural network that has already reached an equilibrium and assign weights to these added connections in such a way that incorrect output vectors are generated. Thus, these conditions are semantically inconsistent. Then, if we train the network with correct samples, the weights of the added connections will be modified in the direction of minimizing their effect. What happens is that the weights will go towards zero and even cross zero during training. In practice, we set a threshold so that when the shift towards zero for a connection weight is greater than this threshold, we delete the connection.

Generalization of a rule can be done by removing some conditions from its premise, whereas specialization can be done by adding more conditions to the premise. If the desired belief value of a conclusion is always higher than that generated by the network and the discrepancy resists decline during learning, it is suggested that rules supporting these conclusions be generalized. Or on the other hand, if the discrepancy is negative and resistant, specialization of a rule may involve qualitative changes of nodes. The back propagation rule has not yet been powerful enough to make this kind of change except deletion of conditions for generalization.

Creation of new rule involves establishment of new connections. Whereas we delete a rule if its absolute strength is below a threshold, we may establish a new connection when its absolute strength is above the threshold. To create new rules we need to create some additional connections which have the potential to become rules. Without any bias, one may need an inference network where all data are fully connected to all intermediate hypotheses,
which in turn are fully connected to all final hypotheses. This is not a feasible approach unless the system is small.

From the above analyses, we allow only the modification of strengths and deletion operators in the neural network approach to rule revision.

Revision of input data is much simpler. If the weight of the connection between an observed and an actual input node after learning is below a predetermined threshold, or the shift towards zero is above a certain value, the corresponding input data attribute is treated as false and deleted accordingly.

It has been known that noise associated with training instances will affect the quality of learning. In the neural network approach, since noise will be distributed over the network, its effect on individual connections is relatively minor. In practice, perfect training instances are neither feasible nor necessary. As long as most instances are correct, a satisfactory performance can be achieved.

The comparison between the TEIRESIAS approach and the neural network approach to error handling is shown in table 4. The neural network approach may be more useful than TEIRESIAS in handling multiple errors or errors involving some unobservable concepts which human experts may have difficulties in dealing with. In addition, the back propagation rule can be uniformly applied to the whole rule base, whereas human experts may focus on certain parts of the rule base consciously or subconsciously. Also Wilkins and Buchanan [1986], suggested that the only proper way to cope with deleterious interactions among rules is to delete offending rules. In light of this view the deletion operator is very useful. While the neural network approach is still
too simple to deal with errors involving qualitative changes of rules, reasoning strategies or meta-level known edge. techniques developed under this approach can supplement the current rule base technology.

Table 4. Comparison between TEIRESIAS and the neural network approach.

<table>
<thead>
<tr>
<th>Approach</th>
<th>TEIRESIAS</th>
<th>Neural network approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operators</td>
<td>Hunan experts</td>
<td>Back-propagation</td>
</tr>
<tr>
<td></td>
<td>Modifying strengths</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deletion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Addition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generalization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specialization</td>
<td></td>
</tr>
<tr>
<td>Errors</td>
<td>Rule errors</td>
<td>Rule and data errors</td>
</tr>
</tbody>
</table>

3.5 Tuning a Rule-base Using Neural Nets

Shavlik & Towell [1989] have given their correspondence for a knowledge base and artificial neural network as shown in Table 5.

Table 5. Shavlik's correspondence between KB & ANN.

<table>
<thead>
<tr>
<th>Knowledge base</th>
<th>Neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final conclusions</td>
<td>Output units</td>
</tr>
<tr>
<td>Supporting facts</td>
<td>Input units</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Hidden units</td>
</tr>
<tr>
<td>conclusions</td>
<td>Weighted connections</td>
</tr>
<tr>
<td>Dependencies</td>
<td></td>
</tr>
</tbody>
</table>
Knowledge based artificial neural network (KBANN) uses a knowledge base (KB) of domain specific inference rules in the form of PROLOG-like clauses to define what is initially known about a topic. The KB need be neither complete nor correct, but needs to only support approximately correct explanations. KBANN translates the KB into an artificial neural network (ANN) in which units and links in the ANN correspond to parts of the KB as shown in the Table 5.

3.5.1 Translation of Rules

Rules are assumed to be conjunctive, non-recursive and variable-free; disjuncts are encoded as multiple rules. The KBANN method sets weights on links and biases of units so that, units have significant activation only \textit{when} the corresponding deduction could be made using the KB. For example, assume there exists a rule in the KB with \(n \) mandatory antecedents (which must be true) and \(m \) prohibitory antecedents (which are not true). The system sets weights on links in the ANN corresponding to the mandatory and prohibitory dependencies of the rule to \(w \) and \(-w\) respectively. The bias on the unit corresponding to the rule's consequent is set to \(n^*w-f \), \(f \) is chosen such that units have activation approximately 0.9 when \textit{their} antecedents are satisfied and activation of approximately 0.1 otherwise.

KBANN handles disjuncts by creating units \(L_1 \) and \(L_2 \), which correspond to \(R_1 \) and \(R_2 \), using the approach for conjunctive rules described above. These units will only be active \textit{when} their corresponding rule is true. KBANN then connects \(L_1 \) and \(L_2 \) to \(L \) by a link of these weight \(w \) and sets the bias of \(L \) to \(w-f \). Hence, \(L \) will be active when either \(L_1 \) or \(L_2 \) is active.
This concept is explained by means of an example by Towell et al. [1990].

3.5.2 Overview of the KBANN Algorithm is as Follows

1. Translate rules to set initial network structure.

2. Add units not specified by translation.

3. Add links not specified by translation.

4. Perturb the network by adding near zero random numbers to all link weights and biases.

3.5.3 Limitations in Shavlik's Approach

a) They have assumed certainty factors of all premises (including condition & action part) and rule strengths to be 1. i.e., they have proposed logical reasoning using NN.

b) They assumed an output of a neuron to be a binary feature (either 0 or 1). But in the real case, when we are considering uncertainty factors which are not equal to 1, it will not be so. While they just mentioned about non-binary features but did not elaborate any further.

c) To handle disjunctive rule, a new node has to be inserted in a NN.

Note: Obviously, non-binary features can be used to implement plausible reasoning.
3.6 Inducing Rules for a Connectionist ES

Gallant has implemented a two-program package for constructing connectionist expert systems from training examples. The first program is a network knowledge base generator that uses several connectionist learning techniques, and the second (MACIE) is a stand alone expert system inference engine that interprets such knowledge bases. [Gallant 1988]

3.6.1 Network Properties

A connectionist model consists of a network of (more or less) autonomous processing units called cells that are joined by directed arcs. Each arc ("connection") has a numerical weight \(w_{ij} \) that roughly corresponds to the influence of cell \(u_j \) on cell \(u_i \). Positive weights indicate reinforcement; negative weights represent inhibition. The weights determine the behavior of the network, playing some what the same role as a conventional program. They classified networks as either feed forward networks if they do not contain directed cycles or feed-back networks if they do contain such cycles.

Every cell \(u_i \) (except for input cells) computes its new activation \(u_i \) as a function for the weighted sum of the inputs to cell \(u_i \) from directly connected cells.

\[
S_i = \sum_{j=0}^{n} w_{ij} u_j \quad \text{for } j = 0 \text{ to } j = n
\]
\[
u_i = f(S_i)
\]

If \(u_j \) is not connected to \(u_i \), then \(w_{ij} = 0 \). By convention there is a cell \(u_0 \) whose output is always +1 that is connected to every cell \(u_i \) (except for input cells). The corresponding weights \(W_{i,0} \) are called biases.
They have given a sample problem for diagnosis and treatment of acute Sachrophagal disease [Buchanan and Shortliffe 1985].

To generate the connectionist knowledge base, they have used following specifications:

- Name of each cell corresponding to variable of interest (symptoms, diseases, treatments). Each variable will correspond to a cell u_i.

- A question for each input variable, to elicit the value of that variable from the user.

- Dependency information for intermediate variables (diseases) and output variables (treatments). Each of these variables has a list of other variables whose values suffice for computing it.

- The final information supplied to the learning problem is the set of training examples.

They have developed a procedure called pocket algorithm that generates weights for discrete networks. Training algorithm specifies the desired activations for intermediate and output cells in the network (easy learning).

\[W^* : \text{for cell } u \text{ let } \{E_k\} \text{ be the set of training example activations.} \]

\[\{C_k\} \text{ be the corresponding correct activations for } u. \]

Pocket algorithm is a modified perceptron algorithm. It computes perceptron weight vectors, P, which occasionally replace pocket weight vectors w^*.

79
They have defined rule as an example E, with the corresponding classification C, that must be satisfied by the resulting w^*. Gallant has named his inference engine as MACIE - Matrix Controlled inference engine. It is represented internally by weight matrix.

3.6.2 ES Algorithms

Initial information - the program starts by listing for the user all variables and allowing any input variable to be initialized to true or false.

Inference/forward chaining: It is usually possible to deduce the activation for cell u, without knowing the values of all of its inputs.

Addition of a new rule: Directly contradiction values $E' = E'$ but $C' \neq C'$ are not allowed.

3.6.3 Limitations in Gallant's Approach

a) MACIE is an **impossible** model for reasoning.

b) Gallant worked with discrete connectionist models.

There are many incomplete areas left in this work.

3.7 Present Work

If is by now quite apparent from the combination of limitations of the earlier three approaches that they have
major drawbacks as discussed earlier and the following enhancements would be very effective and useful:

a) Combination and propagation of non-binary belief values in neural networks (rule wise).

b) Evidential reasoning in a network (rule wise).

c) Learning/Training: Process of training the belief values such that net reaches final conclusion with desired result.

d) Consistency: Defining the consistency of the rule base in the connectionist expert system.

e) Learning a new rule: The process of learning new rules without any major changes to the previous neural net states, etc.

In the next Chapter we will discuss about how we have made some of the enhancements mentioned above.