CONTENTS

Acknowledgements

Abbreviations

I. Introduction

1. Hammerhead Ribozymes
 1.1. Mechanism of Action
 1.1.1. Cleavage Site for Hammerhead Ribozyme
 1.1.2. The Hammerhead Ribozyme Cleavage Reaction
 1.1.3. Ribozyme-Expression Systems and Strategies
 1.1.4. Delivery of Ribozymes *in vivo*
 1.1.5. Stability of Ribozyme *in vivo*
 1.1.6. Ribozyme-Based Therapeutics
2. Tumor Necrosis Factor - Alpha

II. Review of Literature

1. Tumor Necrosis Factor-Alpha (TNF-α)
 1.1. Gene, Promoter Elements and Regulation
 1.2. TNF-Mediated Cell Functions
 1.3. Cleavage and Release of Membrane-Bound TNF-α
 1.4. TNF-α Receptors
 1.5. Apoptosis Induced by TNF-α
 1.6. Role of TNF-α in Pathological States
2. Control of TNF-α Mediated Effects
 2.1. Drug Therapy
 2.2. Cytokine Antagonists as Therapeutic Agents
 2.3. Use of Protease Inhibitors
3. Ribozymes as Biocatalysts
 3.1. Application of Hammerhead Ribozymes *in vivo*
 3.2. Ribozyme-Mediated Control of TNF-α Gene Expression
4. Lacunae in Previous Studies
5. Aim of the Study

III Methods

1. General Procedure
2. Growth, Calcium Treatment and Transformation of Bacteria
3. Isolation of plasmid DNA
 3.1. LiCl Procedure for ‘Rapid Plasmid Minipreps’
 3.2. The Cleared Lysate Method of Large Scale Plasmid Isolation
4. Long-Term Storage of Bacterial Cultures
III.5. Isolation of Human Peripheral Blood Mononuclear Lymphocytes

III.5.1. Induction of PBMLs with LPS

III.6. Modified Protocol for Total RNA Isolation

III.7. RT-PCR of Human TNF-α

III.8. Sanger's Dideoxy Sequencing of DNA Template

III.8.1. Kinasing of the sequencing primers

III.8.2. Sequencing reaction

III.9. In Vitro Run-off Transcription

III.9.1. Removal of Unincorporated Radionucleotides

III.9.2. Measurement of RNA Yield

III.10. In Vitro Ribozyme Cleavage Reaction

III.11. Primer Extension Analysis of Ribozyme₃₁₆ Cleavage Site

III.12. Study of Protein-Ribozyme Interactions

III.12.1. RNasin-Treatment of Cytoplasmic Extracts and Commercially Available Proteins

III.12.2. Binding Studies using Purified Cellular Proteins

III.12.3. UV-Crosslinking of Ribozyme-Protein Complexes

III.12.4. Partial Trypsin Digestion of Proteins

III.12.5. Preparation of Cytoplasmic Extract from Human THP1 Cells

III.12.6. Electrophoresis Mobility Shift Assays (EMSA)

III.13. Rapid Silver Staining Protocol

III.14. Eukaryotic Cells and their Cultures

III.14.1. Cell Splitting

III.14.2. Cell Preservation

III.14.3. Thawing and Reviving Cells

III.15. Transfection of the Plasmids

III.15.1. Ca²⁺- Phosphate-Mediated Co-precipitation

III.16. Ribozyme-Mediated Control of TNF-α: In Vivo Experiments with Culture Supernatants from Ribozyme-Transfected THP1 Cells

III.17. Preparation of Riboprobe for Northern Blotting and RNase Protection Assay

III.18. Procedure for Northern Blotting

III.18.1. Buffers and Solutions

III.18.2. Transfer of the RNA onto Nylon Membrane

III.18.3. Methylene Blue Staining of the Extra Lanes

III.18.4. Hybridization of Probe for Detection of RNA

III.18.4.1. Prehybridization

III.18.4.2. Hybridization of the Membrane using Riboprobe

III.19. Ribonuclease Protection Assay

III.20. Trypan Blue Staining of WEHI 164 Cells for Assay of Viability

III.22. Analysis of Flow Cytometric Data
III.23. Expression and Purification of Human TNF-α in E.coli (SG13009)
III.23.1. Construction of Expression Vector, pQE30-hTNF
III.23.2. Expression and Purification of His-tagged TNF-α from Bacteria
III.23.3. SDS-PAGE for Analysis of Protein Profiles

IV. Results

IV.1. Cloning of cDNA for Human TNF-α
 IV.1.1. cDNA and Protein Sequence of Human TNF-α
IV.2. Design of Cognate Ribozymes for TNF-α mRNA
 IV.2.1. Synthesis and Cloning of Ribozymes in a Suitable In Vitro Expression Vector
 IV.2.2. Screening of Clones for Ribozyme Inserts
IV.3. In Vitro Transcription
IV.4. In Vitro Characterization of Ribozymes Targeted against TNF-α
 IV.4.1. Influence of Length of the Substrate on Ribozyme Cleavage Efficiency
 IV.4.2. Influence of Temperature on Ribozyme Cleavage Activity
 IV.4.3. Multiple Ribozyme-Mediated Cleavage of TNF-α Substrate
 IV.4.4. Specificity of Ribozyme Cleavage Reactions
 IV.4.4.1. Mapping of Rz316 Cleavage Site on TNF-α RNA
 IV.4.4.2. Evaluation of Rz316 on Shorter TNF-α Substrate
IV.5. Interaction of the Ribozymes with Purified Cytosolic Proteins
 IV.5.1. Dimerization of the Rz762 by Cellular Proteins
 IV.5.2. Concentration Dependent Influence of Adenosine Deaminase on Dimerization of Rz762
 IV.5.3. UV-Cross Linking of the Protein Rz762 Complexes
 IV.5.4. RNAse Mapping of the Protein-Rz762 Complex
 IV.5.5. Influence of Proteins on Rz762 Cleavage Activity
 IV.5.6. Effect of Partial-Trypsinization of Proteins on Dimerization of Rz762
 IV.5.7. Ribozyme-Protein Interactions in Human Cytoplasmic Extracts
IV.6. Ribozyme Expression Strategies in Human Cell Line
 IV.6.1. Construction of Vectors for Expression of Ribozymes In Vivo
 IV.6.1.1. Pol II Based Expression
 IV.6.1.1.1. Expression of Ribozymes as Polyadenylated RNA
 IV.6.1.1.2. Expression of Intron-Embedded Ribozymes
 IV.6.1.2. T7 based expression
IV.6.2. Sub-Cloning TNF-α in Mammalian Expression Vector, pCI-neo

IV.7. Expression of Ribozymes in Human THP1 Cells

IV.7.1. Detection of Ribozyme Cleavage Activity in Producer Cell Line
 IV.7.1.1. Northern Blotting Studies for Background Information
 IV.7.1.2. TNF-α Transcript Analysis in Ribozyme Transfected Cell Line
 IV.7.1.3. RNase Protection Assay (RPA) for Detection of Ribozyme Cleavage Products In Vivo.

IV.8. Ribozyme-Mediated Protection against TNF-α Induced Apoptosis

IV.8.1. Total Cell Numbers and Trypan Blue Exclusion Studies
IV.8.2. Flow Cytometry Analysis for Detection of Apoptotic Cells

IV.9. Expression of Human TNF-α in E. Coli

V. Discussions

V.1. Ribozyme-Mediated Cleavage in vitro
 V.1.1. Design of Ribozymes against Substrates which Assume High Secondary Structures
 V.1.2. Specificity of Hammerhead Ribozyme Cleavage
 V.1.3. Effect of Substrate Structure on Ribozyme Cleavage Efficiency
 V.1.4. Protein-Mediated Dimerization of Rz162
 V.1.5. Effect of Proteins on Ribozyme Cleavage Efficiency

V.2. Ribozyme-Mediated Cleavage in vivo

V.3. Biological Significance of Control of TNF-α in vivo

V.4. Future Prospects

VI. Summary and Conclusions

Appendix: Materials Used

Bibliography.