TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic No</th>
<th>Table Name</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIST OF ACRONYMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 1 – INTRODUCTION

1.1 Atmospheric Turbulence 2
1.2 Effect Of Atmospheric Turbulence 3
1.3 Adaptive Optics Technology 5
 1.3.1 Application of Adaptive Optics 7
1.4 Wavefront Sensors 8
1.5 Typical Wavefront Sensors 8
 1.5.1 Shack Hartmann Wavefront Sensor 9
1.5.2 Shearing Interferometer Wavefront Sensor 10
1.6 Wavefront Correcting System 12
 1.6.1 Tip-Tilt Mirror 13
1.6.2 Deformable Mirror 14
1.7 Wavefront Errors 17
 1.7.1 Fitting Error 17
 1.7.2 Temporal Error 18
 1.7.3 Reconstruction Error 18
1.7.4 Aliasing Error 19
CHAPTER II - REVIEW OF RELATED WORKS

2.1 Introduction 33
2.2 Shearing Interferometer based Wavefront Sensor 34
2.3 Proposed Problem 35
2.4 Imaging With Telescope 37
2.5 Imaging through Atmospheric Turbulence 39
 2.5.1 Seeing and Fried Parameter 40
 2.5.2 Strehl Ratio 41
 2.5.3 Atmospheric Coherence Time 42
2.6 Interferogram Simulation 42
 2.6.1 Mathematical Concepts 43
 2.6.2 Interference Fringe Pattern 44
2.7 Conclusion 46

CHAPTER III - NUMERICAL SIMULATION OF ATMOSPHERIC TURBULENCE

3.1 Introduction 47
3.2 Effect of Gaussian Noise On Interferogram 47
3.3 Turbulence Models

3.3.1 Kolmogorov Model of Atmospheric Turbulence

3.4 Fourier Transform based Phase Screen

3.4.1 Effect of Fourier Transform based Phase Screen on Interferogram

3.5 Sub-Harmonics Method based Phase Screen

3.5.1 Effect of Sub-Harmonics based Phase Screen on Interferogram

3.6 Characterisation of Phase Screens and Results

3.7 Interferogram Simulations using Zernike Polynomial

3.7.1 Zernike-based Phase Screen

3.8 Conclusion

CHAPTER IV - PHASE EXTRACTION ALGORITHMS

4.1 Introduction

4.2 Phase Extraction

4.3 Related Works

4.4 Phase Extraction through Median Filter with Fourier Transform

4.4.1 Algorithm Implementation using Median Filter with Fourier Transform

4.4.2 Procedure Employed for Phase Extraction using Median Filter with Fourier Transform

4.5 Phase Extraction through Fourier Transform with Band Pass Filter

4.5.1 Algorithm Implementation using Fourier Transform with Band Pass Filter

4.5.2 Procedure Employed for Phase Extraction using Fourier Transform with Band Pass Filter

4.6 Phase Extraction through Wavelet Transform
CHAPTER V - WAVEFRONT RETRIEVAL AND CORRECTION ALGORITHM

5.1 Introduction 121
5.2 Phase Unwrapping 121
5.3 Wavefront Reconstruction 122
5.3.1 Steps for Wavefront Reconstruction 126
5.4 Wavefront Correction 126
5.4.1 Spatial Correction Devices 127
5.5 Control System 128
5.5.1 Control Algorithm 129
5.6 Simulation Results 133
5.6.1 PSIWS Simulation Software 133
5.6.2 LabVIEW Design 135
5.7 Time Reduction 136
5.7.1 Time Reduction with Data Parallelism using LabVIEW 138

5.7.2 Time Reduction Through Parallel Processing and Pipelining 138

5.8 Conclusion 141

CHAPTER VI - DETAILS OF REAL-TIME EXPERIMENT AND RESULTS

6.1 Introduction 146

6.1 Real-Time Turbulence Simulator 147

6.2.1 Optical Experimental Setup 148

6.2.2 Power Spectrum Calculation 150

6.3 Experimental Setup of Polarized Shearing Interferogram 153

6.3.1 Light Source 155

6.3.2 Imaging Optics 155

6.3.3 Polarized Shearing Interferometer Wavefront Sensor Device 155

6.3.4 Babinet Compensator 156

6.3.5 The CCD Camera 157

6.4 Results 158

6.4.1 Steps for Data Acquisition in LabVIEW 159

6.5 Conclusion 163

CHAPTER VII - CONCLUSION

7.1 Conclusion 165

7.2 Scope for Further Research 168

BIBLIOGRAPHY 170

JOURNAL PUBLICATIONS 184