LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>TITLE</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Comparison of specific energy (WhKg$^{-1}$) of few secondary batteries.</td>
<td>5</td>
</tr>
<tr>
<td>1.2.</td>
<td>Working principle of rechargeable Li$^+$ battery.</td>
<td>7</td>
</tr>
<tr>
<td>1.3.</td>
<td>The crystal structure of layered LiCoO$_2$.</td>
<td>10</td>
</tr>
<tr>
<td>1.4.</td>
<td>The structure of monoclinic Li$_3$Fe$_2$(PO$_4$)$_3$ looking down the unique axis, P is located in the blue tetrahedral and Fe in the green octahedral. Yellow spheres represent the Li$^+$.</td>
<td>11</td>
</tr>
<tr>
<td>1.5.</td>
<td>The crystal structure of lithiated graphite.</td>
<td>15</td>
</tr>
<tr>
<td>1.6.</td>
<td>The crystal structure of Li$_4$Ti5O${12}$.</td>
<td>16</td>
</tr>
<tr>
<td>1.7.</td>
<td>Arrhenius plots of ionic conductivity of important crystalline and amorphous inorganic solid Li$^+$ conductors.</td>
<td>22</td>
</tr>
<tr>
<td>1.8.</td>
<td>The crystal structure of the perovskite (Li$_x$La)TiO$_3$.</td>
<td>23</td>
</tr>
<tr>
<td>1.9.</td>
<td>The crystal structure of LiM$_2$(PO$_4$)$_3$ (M = Ti, Zr, Ge, Hf).</td>
<td>24</td>
</tr>
<tr>
<td>1.10.</td>
<td>The crystal structure of an ideal garnet of general formula A$_3$B$_2$C3O${12}$, where the orange spheres represent B cations and blue and green polyhedrons represent A and C cations, respectively.</td>
<td>26</td>
</tr>
<tr>
<td>1.11.</td>
<td>The lithium cations in Li$_3$Nd$_3$W2O${12}$ are in LiO$_4$ tetrahedron (grey) linked with tungsten (blue) which is octahedrally coordinated by oxide anions (red).</td>
<td>27</td>
</tr>
<tr>
<td>1.12.</td>
<td>Evolution of new family of garnet structured solid Li$^+$ conductors.</td>
<td>28</td>
</tr>
<tr>
<td>1.13.</td>
<td>(a) The La$_3$M2O${12}$ garnet framework showing MO$_6$ octahedral units and Ln$^{3+}$ cations. The occupancy of lithium in (b) trigonal prismatic, (c) octahedral coordination and (d) tetrahedral coordination.</td>
<td>29</td>
</tr>
<tr>
<td>1.14.</td>
<td>Correlation between total (bulk + grain-boundary) Li$^+$ conductivity and activation energy vs lattice parameter of the Li$_5$La$_3$M2O${12}$ (M = Ta, Nb, Sb and Bi) series.</td>
<td>30</td>
</tr>
</tbody>
</table>
1.15. Plot of total (bulk + grain-boundary) (Open square) and bulk ionic conductivity (Open circle) observed at 50 °C and activation energy (Open triangle) vs the eight-coordinated ionic radii of the divalent Mg, Ca, Sr, Sr$_{0.5}$Ba$_{0.5}$ and Ba ions substituting a trivalent La in Li$_5$La$_3$Ta$_2$O$_{12}$.

1.16. The crystal structure of Li$_6$CaLa$_2$Ta$_2$O$_{12}$.

1.17. The comparison of Li$^+$ conductivity of Li$_7$La$_3$Zr$_2$O$_{12}$ with other reported Li$^+$ conductors.

1.18. The crystal structure of tetragonal phase Li$_7$La$_3$Zr$_2$O$_{12}$.

1.19. The crystal structure of high Li$^+$ conductive cubic phase Li$_7$La$_3$Zr$_2$O$_{12}$.

1.20. Flow chart for the preparation of LLZ and Al-LLZ by modified sol-gel technique.

1.21. The crystal structure model of cubic Li$_7$La$_3$Zr$_2$O$_{12}$ projected in the (001) direction (space group $Ia\overline{3}d$) and Possible migration routes for Li$^+$.

1.22. Change in the bulk (solid triangle) and total (solid square) Li$^+$ conductivity measured at 33 °C and activation energy (solid circle) for the composition Li$_x$A$_3$B$_2$O$_{12}$ ($5 \leq x \leq 7.5$).

2.1. PXRD patterns of LLZ sintered at (a) 900 °C and (b) 1225 °C along with the reported patterns of tetragonal phase ($I4_1/acd$) LLZ and high Li$^+$ conductive cubic phase ($Ia\overline{3}d$) LLZ.

2.2. PXRD patterns of LLZ sintered at (a) 900 °C and (b) 1225 °C in the 2θ range from 24° to 45° along with the reported patterns of tetragonal phase ($I4_1/acd$) LLZ and high Li$^+$ conductive cubic phase ($Ia\overline{3}d$) LLZ.

2.3. Raman spectra of (a) Tetragonal ($I4_1/acd$) phase LLZ (b) High Li$^+$ conductive cubic ($Ia\overline{3}d$) phase LLZ (c) Low temperature cubic phase LLZ.
2.4. Raman spectra of LLZ sintered at (a) 900 °C and (b) 1225 °C along with the reported patterns of tetragonal phase ($I4_1/acd$) LLZ and high Li$^+$ conductive cubic phase ($Ia\overline{3}d$) LLZ in the range 75-1000 cm$^{-1}$.

2.5. Temperature dependent Raman spectra measured in the temperature range from 30 °C to 200 °C for LLZ measured in the range 75-1000 cm$^{-1}$ sintered at (a) 900 °C in tetragonal phase ($I4_1/acd$) LLZ and (b) 1225 °C in high Li$^+$ conductive cubic phase ($Ia\overline{3}d$) LLZ.

2.6. SEM images of the fractured surfaces of LLZ pellet sintered at (a) 900 °C and (b) 1225 °C, respectively.

2.7. Typical room temperature (33 °C) AC impedance (Cole-Cole) plots of LLZ pellets sintered at (a) 900 °C and (b) 1225 °C measured using Li$^+$ blocking Au electrodes.

2.8. Arrhenius plots for the total (bulk + grain-boundary) Li$^+$ conductivity of LLZ pellet sintered at (a) 900 °C and (b) 1225 °C measured in the temperature range from 33°C to 200 °C.

2.9. Plot of pH value as a function of time for tetragonal Li$_7$La$_3$Zr$_2$O$_{12}$ in distilled water. The pH at 0 min was measured before LLZ was added into water.

2.10. TG thermograms of (a) freshly prepared tetragonal phase LLZ, tetragonal phase LLZ (b) treated with the solution of benzoic acid and ethanol, (c) immersed in distilled water and (d) exposed to humid atmosphere for 1 week.

2.11. PXRD patterns of (a) freshly prepared tetragonal LLZ, tetragonal phase LLZ (b) treated with the solution of benzoic acid and ethanol, (c) immersed in distilled water and (d) exposed to humid atmosphere for 1 week along with the reported patterns of high Li$^+$ conductive cubic ($Ia\overline{3}d$) phase LLZ and tetragonal ($I4_1/acd$) phase LLZ.

2.12. Raman spectra of (a) freshly prepared tetragonal phase LLZ, tetragonal phase LLZ (b) treated with the solution of benzoic acid and ethanol, (c) immersed in distilled water and (d) exposed to humid atmosphere for 1 week along with the reported patterns of
high Li$^+$ conductive cubic (Ia$\bar{3}$d) phase LLZ and tetragonal
(I4$_1$/acd) phase LLZ.

2.13. SEM images of the fractured surface of (a) freshly prepared
tetragonal phase LLZ, tetragonal phase LLZ (b) treated with the
solution of benzoic acid and ethanol, (c) immersed in distilled
water and (d) exposed to humid atmosphere for 1 week.

2.14. TG thermograms of (a) freshly prepared tetragonal phase LLZ,
tetragonal phase LLZ (b) treated with the solution of benzoic acid
and ethanol, (c) immersed in distilled water and (d) exposed to
humid atmosphere for 4 weeks.

2.15. PXRD patterns of (a) freshly prepared tetragonal phase LLZ,
tetragonal phase LLZ (b) treated with the solution of benzoic acid
and ethanol, (c) immersed in distilled water and (d) exposed to
humid atmosphere for 4 weeks.

2.16. Raman spectra of (a) freshly prepared tetragonal phase LLZ,
tetragonal phase LLZ (b) treated with the solution of benzoic acid
and ethanol, (c) immersed in distilled water and (d) exposed to
humid atmosphere for 4 weeks along with the reported patterns of
tetragonal (I4$_1$/acd) phase LLZ, high Li$^+$ conductive cubic (Ia$\bar{3}$d)
phase LLZ and low temperature cubic phase LLZ.

2.17. SEM images of the fractured surface of (a) freshly prepared
tetragonal phase LLZ, tetragonal phase LLZ (b) treated with the
solution of benzoic acid and ethanol, (c) immersed in distilled
water and (d) exposed to humid atmosphere for 4 weeks.

2.18. PXRD patterns of (a) freshly prepared cubic phase LLZ, cubic
phase LLZ (b) treated with the solution of benzoic acid and
ethanol, (c) immersed in distilled water and (d) exposed to humid
atmosphere for 4 weeks.

2.19. Raman spectra of (a) freshly prepared cubic phase LLZ, cubic
phase LLZ (b) treated with the solution of benzoic acid and
ethanol, (c) immersed in distilled water and (d) exposed to humid
atmosphere for 4 weeks.

2.20. SEM images of the fractured surface of (a) freshly prepared cubic
phase LLZ, cubic phase LLZ (b) treated with the solution of
benzoic acid and ethanol, (c) immersed in distilled water and
(d) exposed to humid atmosphere for 4 weeks.
3.1. PXRD patterns for (a) Li$_{6.4}$La$_3$Zr$_{1.7}$W$_{0.3}$O$_{12}$ and (b) Li$_6$La$_3$Zr$_{1.5}$W$_{0.5}$O$_{12}$ sintered at 1100°C along with the reported pattern of high Li$^+$ conductive cubic phase LLZ.

3.2. SEM images of (a) Li$_{6.4}$La$_3$Zr$_{1.7}$W$_{0.3}$O$_{12}$ and (b) Li$_6$La$_3$Zr$_{1.5}$W$_{0.5}$O$_{12}$ pellets sintered at 1100 °C.

3.3. AC impedance (Cole-Cole) plots of Li$_{6.4}$La$_3$Zr$_{1.7}$W$_{0.3}$O$_{12}$ and Li$_6$La$_3$Zr$_{1.5}$W$_{0.5}$O$_{12}$ pellets sintered at 1100 °C measured at (a) -50 °C and (b) 30 °C using Li$^+$ blocking Au electrodes.

3.4. Arrhenius plots for total (bulk + grain-boundary) Li$^+$ conductivity of (a) Li$_{6.4}$La$_3$Zr$_{1.7}$W$_{0.3}$O$_{12}$ and (b) Li$_6$La$_3$Zr$_{1.5}$W$_{0.5}$O$_{12}$ in the temperature range -100 °C to 100 °C.

3.5. Frequency dependent conductivity measured in the temperature interval from -100 °C to 0 °C of (a) Li$_{6.4}$La$_3$Zr$_{1.7}$W$_{0.3}$O$_{12}$ and (b) Li$_6$La$_3$Zr$_{1.5}$W$_{0.5}$O$_{12}$. The solid lines are best fit to the Almond-West conductivity formalism.

3.6. Arrhenius plots of (a) log$_{10}$(σ_{dc}T) vs. 1000/T (b) log$_{10}$(ω_p) vs. 1000/T for Li$_{6.4}$La$_3$Zr$_{1.7}$W$_{0.3}$O$_{12}$ and Li$_6$La$_3$Zr$_{1.5}$W$_{0.5}$O$_{12}$.

3.7. Plots of real part of modulus (M') of (a) Li$_{6.4}$La$_3$Zr$_{1.7}$W$_{0.3}$O$_{12}$ and (b) Li$_6$La$_3$Zr$_{1.5}$W$_{0.5}$O$_{12}$ with frequency.

3.8. Plots of imaginary part of modulus (M'') of (a) Li$_{6.4}$La$_3$Zr$_{1.7}$W$_{0.3}$O$_{12}$ and (b) Li$_6$La$_3$Zr$_{1.5}$W$_{0.5}$O$_{12}$ with frequency.

3.9. Arrhenius plots for log(f_mT) vs. 1000/T in the temperature range -100 °C to 0 °C of (a) Li$_{6.4}$La$_3$Zr$_{1.7}$W$_{0.3}$O$_{12}$ and (b) Li$_6$La$_3$Zr$_{1.5}$W$_{0.5}$O$_{12}$.

3.10. Modulus scaling behavior of (a) Li$_{6.4}$La$_3$Zr$_{1.7}$W$_{0.3}$O$_{12}$ and (b) Li$_6$La$_3$Zr$_{1.5}$W$_{0.5}$O$_{12}$.

3.11. Scaling plots for the conductivity spectra for (a) Li$_{6.4}$La$_3$Zr$_{1.7}$W$_{0.3}$O$_{12}$ and (b) Li$_6$La$_3$Zr$_{1.5}$W$_{0.5}$O$_{12}$. The conductivity and frequency axes are scaled by the dc conductivity σ_{dc} and hopping frequency ω_p, respectively.
3.12. Variation of real part (ε') of dielectric permittivity with frequency at different temperatures for (a) $\text{Li}_6\text{La}_3\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$ and (b) $\text{Li}_6\text{La}_3\text{Zr}_1\text{Ta}_0.15\text{O}_{12}$.

3.13. Variation of imaginary part (ε'') of dielectric permittivity with frequency at different temperatures for (a) $\text{Li}_6\text{La}_3\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$ and (b) $\text{Li}_6\text{La}_3\text{Zr}_1\text{Ta}_0.15\text{O}_{12}$.

3.14. The frequency dependence curves of dielectric loss tan δ, at different temperatures for (a) $\text{Li}_6\text{La}_3\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$ and (b) $\text{Li}_6\text{La}_3\text{Zr}_1\text{Ta}_0.15\text{O}_{12}$.

4.1. PXRD patterns of (a) $\text{Li}_6\text{La}_3\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$, (b) $\text{Li}_6\text{La}_2.875\text{Y}_{0.125}\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$, (c) $\text{Li}_6\text{La}_2.75\text{Y}_{0.25}\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$ and (d) $\text{Li}_6\text{La}_2.5\text{Y}_{0.5}\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$ sintered at 750 °C along with the patterns of tetragonal LLZ and high Li$^+$ conductive cubic phase LLZ.

4.2. PXRD patterns of (a) $\text{Li}_6\text{La}_3\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$, (b) $\text{Li}_6\text{La}_2.875\text{Y}_{0.125}\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$, (c) $\text{Li}_6\text{La}_2.75\text{Y}_{0.25}\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$ and (d) $\text{Li}_6\text{La}_2.5\text{Y}_{0.5}\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$ sintered at 1200 °C along with the patterns of tetragonal LLZ and high Li$^+$ conductive cubic phase LLZ.

4.3. PXRD patterns of $\text{Li}_{7-x}\text{La}_{3-y}\text{Y}_y\text{Zr}_2\text{x}\text{Ta}_0.4\text{O}_{12}$ ($x = 0.4$, $y = 0$, 0.125, 0.25 and 0.5) sintered at 750 °C (red colour) and 1200 °C (blue colour) in the 2θ range 24° to 45°.

4.4. Raman spectra of (a) $\text{Li}_6\text{La}_3\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$, (b) $\text{Li}_6\text{La}_2.875\text{Y}_{0.125}\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$, (c) $\text{Li}_6\text{La}_2.75\text{Y}_{0.25}\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$ and (d) $\text{Li}_6\text{La}_2.5\text{Y}_{0.5}\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$ sintered at 750 °C measured in the range 50-1000 cm$^{-1}$ along with the patterns of tetragonal LLZ and high Li$^+$ conductive cubic phase LLZ.

4.5. Raman spectra of (a) $\text{Li}_6\text{La}_3\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$, (b) $\text{Li}_6\text{La}_2.875\text{Y}_{0.125}\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$, (c) $\text{Li}_6\text{La}_2.75\text{Y}_{0.25}\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$ and (d) $\text{Li}_6\text{La}_2.5\text{Y}_{0.5}\text{Zr}_1\text{Ta}_0.4\text{O}_{12}$ sintered at 1200 °C measured in the range 50-1000 cm$^{-1}$ along with the patterns of tetragonal LLZ and high Li$^+$ conductive cubic phase LLZ.

4.6. Raman spectra of $\text{Li}_{7-x}\text{La}_{3-y}\text{Y}_y\text{Zr}_2\text{x}\text{Ta}_0.4\text{O}_{12}$ ($x = 0.4$, $y = 0$, 0.125, 0.25 and 0.5) sintered at 750 °C (red colour) and 1200 °C (blue colour) along with the patterns of high Li$^+$ conductive cubic phase LLZ (black colour) measured in the range 600–900 cm$^{-1}$ showing
an appreciable shift in the positions of vibrational stretching modes of ZrO$_6$ and TaO$_6$ octahedral units.

4.7. Raman spectra of (a) Li$_{6.6}$La$_3$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, (b) Li$_{6.6}$La$_{2.875}$Y$_{0.125}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, (c) Li$_{6.6}$La$_{2.75}$Y$_{0.25}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, and (d) Li$_{6.6}$La$_{2.5}$Y$_{0.5}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$ sintered at 750 °C measured in the range 50-4000 cm$^{-1}$.

4.8. FTIR spectra of (a) Li$_{6.6}$La$_3$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, (b) Li$_{6.6}$La$_{2.875}$Y$_{0.125}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, (c) Li$_{6.6}$La$_{2.75}$Y$_{0.25}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, and (d) Li$_{6.6}$La$_{2.5}$Y$_{0.5}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$ sintered at 750 °C measured in the range 500-4000 cm$^{-1}$.

4.9. TG thermograms of (a) Li$_{6.6}$La$_3$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, (b) Li$_{6.6}$La$_{2.875}$Y$_{0.125}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, (c) Li$_{6.6}$La$_{2.75}$Y$_{0.25}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, and (d) Li$_{6.6}$La$_{2.5}$Y$_{0.5}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$ pellets sintered at 1200 °C.

4.10. FE-SEM images of the fractured surface of (a) Li$_{6.6}$La$_3$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, (b) Li$_{6.6}$La$_{2.875}$Y$_{0.125}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, (c) Li$_{6.6}$La$_{2.75}$Y$_{0.25}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, and (d) Li$_{6.6}$La$_{2.5}$Y$_{0.5}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$ pellets sintered at 1200 °C and (e-h) represent the magnified FE-SEM images of the respective samples.

4.11. Comparison of FE-SEM images of the fractured surface of (a) Li$_{6.6}$La$_3$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$ and (b) Li$_{6.6}$La$_{2.75}$Y$_{0.25}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$ pellets sintered at 1200 °C.

4.12. FE-SEM image and EDX mapping of Li$_{6.6}$La$_{2.75}$Y$_{0.25}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$ pellets sintered at 1200 °C.

4.13. FE-SEM image and EDX mapping of Li$_{6.6}$La$_{2.5}$Y$_{0.5}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$ pellet sintered at 1200 °C indicated the possible segregation of Y containing secondary phase at the grain-boundary.

4.14. Typical AC impedance (Cole-Cole) plots measured at room temperature (27 °C) for Li$_{7-x}$La$_{3-x}$Y$_x$Zr$_{2-x}$Ta$_x$O$_{12}$ ($x = 0.4, 0.125, 0.25$ and 0.5) pellets sintered at 750 °C using Li$^+$ blocking Au electrodes. The impedance plot in the high frequency region is shown as insert.

4.15. Typical AC impedance (Cole-Cole) plots measured at room temperature (27 °C) for (a) Li$_{6.6}$La$_3$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, (b) Li$_{6.6}$La$_{2.875}$Y$_{0.125}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, (c) Li$_{6.6}$La$_{2.75}$Y$_{0.25}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, and (d) Li$_{6.6}$La$_{2.5}$Y$_{0.5}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$ pellets sintered at 1200 °C using Li$^+$ blocking Au electrodes.
4.16. Arrhenius plots of (a) Li$_{6.6}$La$_3$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, (b) Li$_{6.6}$La$_{2.875}$Y$_{0.125}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$, (c) Li$_{6.6}$La$_{2.75}$Y$_{0.25}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$ and (d) Li$_{6.6}$La$_{2.5}$Y$_{0.5}$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$ measured in the temperature range from 27 °C to 200 °C.

5.1. Flowchart for the preparation of LLZ and Al-LLZ by novel combustion technique.

5.2. (a) TG, (b) DSC curves of LLZ and Al-LLZ without excess lithium source, with 10 wt.% and 20 wt.% excess lithium source and (c) Corresponding DSC curve in the temperature range 500 °C to 950 °C.

5.3. PXRD patterns of (a) LLZ-0, (b) LLZ-10 and (c) LLZ-20 of as-burnt powder, sintered at 750 °C, 950 °C and 1200 °C along with the reported patterns of cubic (I$a\bar{3}d$) phase LLZ and tetragonal (I$4_1/acd$) phase LLZ.

5.4. PXRD patterns of (a) Al-LLZ-0, (b) Al-LLZ-10 and (c) Al-LLZ-20 of as-burnt powder, sintered at 750 °C, 950 °C and 1200 °C along with the reported patterns of cubic (I$a\bar{3}d$) phase LLZ and tetragonal (I$4_1/acd$) phase LLZ.

5.5. Raman spectra of (a) LLZ-0, (b) LLZ-10 and (c) LLZ-20 of as-burnt powder, sintered at 750 °C, 950 °C and 1200 °C along with the reported patterns of cubic (I$a\bar{3}d$) phase LLZ and tetragonal (I$4_1/acd$) phase LLZ in the range 50-1200 cm$^{-1}$.

5.6. Raman spectra of (a) Al-LLZ-0, (b) Al-LLZ-10 and (c) Al-LLZ-20 of as-burnt powder, sintered at 750 °C, 950 °C and 1200 °C along with the reported patterns of cubic (I$a\bar{3}d$) phase LLZ and tetragonal (I$4_1/acd$) phase LLZ in the range 50-1200 cm$^{-1}$.

5.7. SEM images of the fractured surfaces of (a) LLZ-0, (b) LLZ-10 and (c) LLZ-20 sintered at 1200 °C for 6 hours. (e-f) represent the magnified SEM images of the respective samples.

5.8. SEM images of the fractured surfaces of (a) Al-LLZ-0, (b) Al-LLZ-10, (c) Al-LLZ-20 sintered at 1200 °C for 6 hours and (e-f) represent the magnified SEM images of the respective samples.

5.9. Magnified SEM image of Al-LLZ-20 sintered at 1200 °C.
5.10. Typical room temperature (30 °C) AC impedance (Cole-Cole) plots of (a) LLZ-0, (b) LLZ-10 and (c) LLZ-20 pellets sintered at 1200 °C using Li+ blocking Au electrodes.

5.11. Typical room temperature (30 °C) AC impedance (Cole-Cole) plots of (a) Al-LLZ-0, (b) Al-LLZ-10 and (c) Al-LLZ-20 pellet sintered at 1200 °C using Li+ blocking Au electrodes and the equivalent circuit.

5.12. Arrhenius plots for the total (bulk + grain-boundary) Li+ conductivity of LLZ and Al-LLZ without excess lithium source, with 10 wt.% and 20 wt.% excess lithium source sintered at 1200 °C measured in the temperature range from 30 °C to 200 °C.

5.13. The size distribution of the particles of Al-LLZ-10 powder sintered at 1200 °C.