CHAPTER I
GARNET STRUCTURED INORGANIC SOLID FAST LITHIUM ION CONDUCTORS: A BRIEF OVERVIEW

1.1. Introduction 1

1.1.1. Types of batteries 1

1.1.2. Basic concepts used to evaluate the electrochemical performance of batteries 2

1.2. Rechargeable Li+ batteries 5

1.2.1. Working principle of Li+ battery 6

1.2.2. Advantages of the Li+ rechargeable battery compared to other rechargeable batteries 8

1.2.3. Disadvantages of the present Li+ battery technology 8

1.3. Materials for Li+ rechargeable batteries 9

1.3.1. Positive electrode materials for rechargeable Li+ battery 9
1.3.1.1. Lithium cobalt oxide (LiCoO$_2$) 9
1.3.1.2. Lithium iron phosphate (LiFePO$_4$) 11
1.3.1.3. Lithium manganese oxide (LiMn$_2$O$_4$) 12

1.3.2. Negative electrode materials for rechargeable Li$^+$ battery 13
1.3.2.1. Lithium metal 13
1.3.2.2. Graphite 13
1.3.2.3. Spinel Li$_4$Ti$_5$O$_{12}$ 15

1.3.3. Electrolyte materials for rechargeable Li$^+$ battery 16
1.3.3.1. Liquid electrolytes 17
1.3.3.2. Ionic liquids 18
1.3.3.3. Polymer electrolytes 19
1.3.3.4. Solid fast Li$^+$ conductors 20

1.4. Inorganic solid electrolytes 21
1.4.1. Perovskite type lithium lanthanum titanante (LLTO) 22
1.4.2. NASICON type lithium aluminum titanium phosphate (LATP) 23
1.4.3. Lithium phosphorus oxynitride (LIPON) 24

1.5. Garnet structured solid fast Li$^+$ conductors 25
1.5.1. Lithium stuffed garnets 27
1.5.1.1. Crystal structure of tetragonal and high Li$^+$ conductive cubic phase Li$_7$La$_3$Zr$_2$O$_{12}$ (LLZ) 33
1.5.2. Synthesis techniques for the preparation of lithium garnets 36
1.5.2.1 Solid-state reaction method 36
1.5.2.2 Sol gel method

1.5.2.3 Pechini method

1.5.2.4 Thin film processing techniques

1.5.2.5 Nebulized spray pyrolysis (NSP) technique

1.5.3. Li⁺ dynamics in lithium garnets

1.9 Scope of this thesis

References

CHAPTER II

STRUCTURAL STABILITY OF TETRAGONAL AND HIGH Li⁺ CONDUCTIVE CUBIC PHASE Li₇La₃Zr₂O₁₂ LITHIUM GARNET

2.1. Introduction

2.2. Experimental section

2.2.1. Synthesis of Li₇La₃Zr₂O₁₂ (LLZ) using solid-state reaction technique

2.2.2. Li⁺/H⁺ exchange in Li₇La₃Zr₂O₁₂

2.2.3. Characterization

2.3. Results and discussion

2.3.1. Structural analysis using powder X-ray diffraction (PXRD) and Raman spectroscopy

2.3.2. Microstructural analysis

2.3.3. Impedance analysis

2.3.4. Stability of tetragonal phase LLZ
2.3.5. Stability of high Li\(^+\) conductive cubic phase LLZ

2.4. Conclusion

References

CHAPTER III

Li\(^+\) TRANSPORT PROPERTIES OF TUNGSTEN SUBSTITUTED Li\(_7\)La\(_3\)Zr\(_2\)O\(_{12}\)
CUBIC LITHIUM GARNETS

3.1. Introduction

3.2. Experimental section

3.2.1. Synthesis of Li\(_{7-2x}\)La\(_3\)Zr\(_{2-x}\)W\(_x\)O\(_{12}\) (\(x = 0.3\) and 0.5)

3.2.2. Characterization

3.3. Results and discussion

3.3.1. Powder X-ray diffraction (PXRD)

3.3.2. Microstructural analysis

3.3.3. Electrical properties

3.3.3.1. Impedance analysis

3.3.3.2. AC conductivity behavior

3.3.3.3. Electric Modulus analysis

3.3.3.4. AC conductivity scaling

3.3.3.5. Dielectric analysis

3.3.3.6. Loss tangent (tan \(\delta\))

3.4. Conclusion

References
CHAPTER IV
EFFECT OF SIMULTANEOUS SUBSTITUTION OF YTTRIUM AND TANTALUM ON THE STABILIZATION OF CUBIC PHASE, MICROSTRUCTURE AND Li⁺ CONDUCTIVITY OF Li₇La₃Zr₂O₁₂ LITHIUM GARNET

4.1. Introduction 139

4.2. Experimental section 141
 4.2.1. Synthesis of Li₇₋ₓLa₃₋ₚYₚZr₂₋ₓTaₓO₁₂ (x = 0.4, y = 0, 0.125, 0.25 and 0.5) 141
 4.2.2. Characterization 142

4.3. Results and discussion 143
 4.3.1. Powder X-ray diffraction (PXRD) 143
 4.3.2. Raman spectroscopic studies 148
 4.3.3. Microstructural analysis 158
 4.3.4. Electrical properties 165

4.4. Conclusion 172

References 174

CHAPTER V
RAPID SYNTHESIS OF NANOSIZED HIGH Li⁺ CONDUCTIVE CUBIC PHASE LITHIUM GARNETS

5.1. Introduction 176

5.2. Experimental section 179
 5.2.1. Synthesis of LLZ and Al doped LLZ 179
5.2.2. Characterization

5.3. Results and discussion
 5.3.1. Thermal analysis
 5.3.2. Powder X-ray diffraction (PXRD)
 5.3.3. Raman spectroscopic analysis
 5.3.4. Microstructural analysis
 5.3.5. Impedance analysis

5.4. Conclusion

References

CHAPTER VI

Conclusion

RESEARCH PUBLICATIONS