List of Figures

Figure A.1. Percentage increase in number of people with diabetes from the year 2000 to 2030 24
Figure A.2. Percentage increase in total population with diabetes from the year 2000 to 2030 25
Figure A.3. Percentage change in urban population with diabetes from the year 2000 to 2030 25
Figure A.4. Estimated number of adults with diabetes by age-group, year and countries 26
Figure A.5. The prevalence of diabetes in India study (PODIS 2002) 28
Figure A.6. Disorders of glycaemia: Etiologic types and stages. 31
Figure A.7. Insulin action in the cell. 34
Figure A.8. Molecular mechanism of insulin-stimulated transport. 35
Figure A.9. Schematic representation of the mechanisms controlling the initiation and some amplification pathways of insulin secretion in the pancreatic β-cell. 36
Figure A.10. Pathogenesis of type 2 diabetes. 39
Figure A.11. Insulin resistance. 40
Figure A.12. Insulin resistance and type 2 diabetes. 41
Figure A.13. Major target organs and actions of orally administered antihyperglycemic agents in type 2 diabetes mellitus. 44
Table A.3. Food and Drug Administration -approved Indications for oral Antidiabetic Agents 44
Figure A.14. Insulin secretagogues mimic glucose to close adenosine triphosphate sensitive potassium channels (kir6.2) and stimulate insulin secretion. 45
Figure A.15. Biological effects of GLP-1 in humans. 51
Figure A.16. Secretion and metabolism of GLP-1. 52
Figure A.17. Influences on Insulin Secretion in β-Cells. 56
Figure A.18. Scheme of present study. 58
Figure 2.1. Structural relationships among human DPP-IV activity- and/or structure-homologues. 70
Figure 2.2. Domain structure of DPP-IV. 71
Figure 2.3. Lineweaver-Burke plot for DPP-IV inhibition by GRC 8011. 79
Figure 2.4. Fast binding kinetics for inhibition of DPP-IV by GRC 8011. 80
Figure 3.1. Maintenance of blood glucose concentration in fed-state: roles of insulin, glucagon and GLP-1. 83
Figure 3.2. Schematic diagram of the endocrine pathway for the actions of GLP-1. 84
Figure 3.3. End points of diabesity progression. 90
Figure 3.8.1. Dose-response relationship of GRC 8011 in OGTT in C57BL/6J mice. 111
Figure 3.9.1. Effect of GRC 8011 on whole glucose in 18 hour fasted C57BL/6J mice: AUCg0-120 data 112
Figure 3.10.1.1. Pharmacodynamic effects of GRC 8011 in OGTT in C57BL/6J mice. A) Plasma glucose levels, B) corresponding AUCg 0-120 data 114
Figure 3.10.1.2. Pharmacodynamic effects of GRC 8011 in OGTT in C57BL/6J mice. A) Plasma DPP-IV levels, and B) AUCd 0-120 data 115
Figure 3.10.2.1. Plain OGTT in n0-STZ rats at 8 weeks of age: A) Time-WBG concentration curve, B) corresponding AUCg 0-120 data

Figure 3.10.2.2. Pharmacodynamics of GRC 8011 in a type 2 diabetic rat (n0-STZ) model in OGTT: Plasma glucose, DPP-IV, active GLP-1 and insulin data.

Figure 3.11.1.1. Effect of GRC 8011 on OGTT in male db/db mice: WBG concentration vs time curve

Figure 3.11.1.2. Effect of GRC 8011 on OGTT in male db/db mice: AUCg0-120 data

Figure 3.11.2.1. Effect of GRC 8011 on OGTT in male ob/ob mice: WBG concentration vs time curve

Figure 3.11.2.2. Effect of GRC 8011 on OGTT in male ob/ob mice: AUCg0-120 data

Figure 3.12.1. Effect of HFD (45 kcal% lard diet) on body weight in C57BL/6J mice

Figure 3.12.2. Plain OGTT in C57BL/6J mice fed with Lard control (10 kcal% lard) and HFD (45 kcal% lard) diets

Figure 3.13.1. OGTT on a) day 14 and b) day 56 of the sub-chronic study in male C57BL/6J mice.

Figure 3.13.2. Effect of GRC 8011 on plasma glucose levels - a) fasting condition and b) fed-state.

Figure 3.13.3. Effect of chronic administration of GRC 8011 on a) body weight and b) food intake in C57BL/6J mice.

Figure 3.14.1. Plain OGTT in n0-STZ rats: Time-WBG concentration curve

Figure 3.14.2. Acute OGTT in n0-STZ rats on day 0 and 18 of the study.

Figure 3.14.3. Plain OGTT in n0-STZ rats - day 21 of the study: AUCg0-120 data

Figure 3.14.4. Effect of GRC 8011 on plasma glucose levels

Figure 3.14.5. Effect of GRC 8011 on HbA1c levels on day 28 of the study

Figure 3.14.6. Effect of GRC 8011 on plasma triglyceride levels on day 28 of the study

Figure 3.14.7. Effect of GRC 8011 on feed consumption

Figure 3.14.8. Effect of GRC 8011 on percent body weight gain data

Figure 3.17.1. Pharmacodynamic correlation between plasma glucose and DPP-IV in OGTT in n0-STZ rats. A) Effect of GRC 8011 alone, and B) in combination with metformin.

Figure 3.17.2. Pharmacodynamic correlation between plasma active GLP-1 and insulin in OGTT in n0-STZ rats. A) Effect of GRC 8011 alone, and B) in combination with metformin

Figure 3.18.1. Morphometric analysis of β-cells immunoreactive for insulin

Figure 4.1. Concentration-time profile of GRC 8011 during the pharmacokinetic study in rats

Figure 5.2.1a. Effect of GRC 8011 on body weight in subacute (28-day oral administration) toxicity study in male mice

Figure 5.2.1b. Effect of GRC 8011 on body weight in subacute (28-day oral administration) toxicity study in female mice

Figure 6.1. Gastrointestinal hormones and regulation of food intake.

Figure 6.1.1. Effect of GRC 8011 on food intake in 18 h fasted rat.

Figure 6.2.1. Effect of GRC 8011 on intestinal transit of charcoal meal in mice

Figure 6.4.1. Effect of GRC 8011 on body weight in Zucker fa/fa rats
Figure 6.4.2. Effect of GRC 8011 on feed consumption in Zucker fa/fa rats

Figure 6.4.3. Effect of GRC 8011 on plasma cholesterol in diet-induced obese mice

Figure 6.4.4. Effect of GRC 8011 on body weight in diet-induced obese mice

Figure 6.4.5. Effect of GRC 8011 on feed consumption in diet-induced obese mice