Contents

1. **CHAPTER-1**
 Introduction
 1.1. A brief objective of the Thesis Unique representation of graph
 1.2. A few sentences about the background of the work
 1.3. A brief history
 1.4. Outline of the thesis

2. **CHAPTER-2**
 Representation of Graph focused in this thesis
 2.1. Introduction
 2.2. Representation of Graph in a Computer

3. **CHAPTER-3**
 Label
 3.1. Introduction
 3.2. Label and Graphic Integer Sequence to generate random graph
 3.2.1. Algorithm
 3.2.2. Illustration with an example
 3.3. Conclusion

4. **CHAPTER-4**
 Graph theoretic problems those can be efficiently solved using GInS
 4.1. Introduction
 4.2. Canopy
 4.3. Million dollar question- Why another term in graph theory?
 4.4. Classification by problem type
 4.5. Conclusion
CHAPTER-5

Graphic integer sequence (GInS)

5.1. Introduction 24
5.2. Preliminaries 24
5.3. Algorithm Outline 26
5.4. Proposed algorithms 28
5.5. When an integer sequence represents a tree sequence
 5.5.1. Introduction 29
 5.5.2. Foundation of the proposed Algorithm 31
 5.5.3. Proposed algorithm 32
 5.5.4. Explanation of the Algorithm 34
 TREE_SEQ with an Example:
 5.5.5. Complexity and Experimental Results 35
 5.5.6. Conclusion: 37
5.6. Hamiltonian Circuit and Euler Trail 38
 5.6.1. Introduction 38
 5.6.2. Proposed Algorithm: HAMILTON_CKT 39
 5.6.3. Explanation of the Algorithm 40
 HAMILTON_CKT with an Example
 5.6.4. Proposed Algorithm: EULER_TOUR 41
 5.6.5. Complexity 41
 5.6.6. Conclusion 41
5.7. Connectedness 42
 5.7.1. Introduction 42
 5.7.2. Proposed Criteria 42
 5.7.3. Proposed theorem 44
 5.7.4. Analysis with examples 45
 5.7.5. Complexity 46
 5.7.6. Conclusion 46
5.8. Maximum Clique Number 47
5.8.1. Introduction
5.8.2. Illustration of the procedure with an example
5.8.3. Foundation of the proposed Algorithm
5.8.4. Proposed Algorithm:
5.8.5. Explanation of the Algorithm
 MAX_CLQ with an Example
5.8.6. Complexity and experimental Results
5.8.7. Conclusion:
5.9. Applications of designated algorithms
5.10. Conclusion

6. CHAPTER-6
GINS as canopy of Trees
6.1. Introduction
6.2. Some Fundamental notations about trees of a graph
 6.2.1. Tree definitions
 6.2.2. Some Properties of trees
6.3. Counting trees of a graph
6.4. Classification of tree Generation Algorithm
 6.4.1. Generation of a single tree of a graph
 6.4.2. GInS and Spanning tree of a graph:
 6.4.3. Generation of all trees of a graph
 6.4.3.1. Decomposition Techniques
 6.4.3.2. Elementary tree transformation methods
 6.4.3.3. Test and select method
 6.4.3.3.1. Preliminaries
 6.4.3.3.2. Logic behind the algorithm
 6.4.3.3.3. Related Theorems
6.4.3.3.4. Proposed Algorithm for Generation of All Spanning Trees

6.4.3.3.5. Illustration with an example

6.4.3.3.6. Computational Complexity

6.4.3.3.7. Experimental Result

6.5. Conclusion

7. CHAPTER-7
GINS as canopy of conjectures

7.1. Introduction

7.2. Preliminaries

 7.2.1. Some Definitions
 7.2.2. Some properties

7.3. Graphic Integer Sequence Reconstruction

7.4. Recoverable facts

7.5. Reconstructible graphs using reconstructed graphic integer sequence

7.6. Notations

7.7. Matching polynomial and reconstruction conjecture
 7.7.1. Matching Polynomial

7.8. Matching Polynomial generation using Tree Decomposition
 7.8.1. Algorithm: gen_mpoly(Graph G)
 7.8.2. Example

7.9. Reconstruction of Matching Polynomial

7.10. Node reconstruction of a graph
 7.10.1. Algorithm
 7.10.2. Example

7.11. Edge reconstruction of a graph
7.11.1. Algorithm 89
7.11.2. Example 90
7.12. Analysis 95
 7.12.1. Analysis of node reconstruction Algorithm 96
 7.12.2. Analysis of edge reconstruction Algorithm 96
7.13. Conclusion 96

8. CHAPTER-8 97
 Conclusion and future Scope

References: 100

List of Publication by the author 108