TABLE OF CONTENTS

CERTIFICATE

ACKNOWLEDGEMENTS

DEDICATION

<table>
<thead>
<tr>
<th>1. INTRODUCTION AND REVIEW OF LITERATURE</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Introduction</td>
<td>1-16</td>
</tr>
<tr>
<td>1.2. Review of Literature</td>
<td></td>
</tr>
<tr>
<td>1.2.1. International status</td>
<td></td>
</tr>
<tr>
<td>1.2.2. National status</td>
<td></td>
</tr>
<tr>
<td>1.2.3. Critical appraisal</td>
<td></td>
</tr>
<tr>
<td>1.3. Objectives</td>
<td></td>
</tr>
</tbody>
</table>

2. DESCRIPTION OF FISH SPECIES	17-31
2.1. *Heteropneustes fossilis*	
2.2. *Channa punctata*	
2.3. *Clarias batrachus*	
2.4. *Wallago attu*	
2.5. *Sperata seenghala*	

3. MATERIALS AND METHODS	32-39
3.1. Study area	
3.2. Sampling	
3.3. Truss morphometric measurements	
3.4. Removal of otoliths	
3.5. Sample preparation	
3.6. Elemental analysis of otolith	
3.7. Data analysis	
3.7.1. Truss morphometry	
3.7.2. Otolith chemistry	
4. RESULTS

4.1. Heteropneustes fossilis
4.2. Channa punctata
4.3. Clarias batrachus
4.4. Wallago attu
4.5. Sperata seenghala

5. DISCUSSION

6. REFERENCES

7. PUBLICATIONS

7.1. Papers published
7.2. Papers communicated
LIST OF TABLES

Table 1. Sampling details of *Heteropeustes fossilis* collected from rivers Ganga, Yamuna and Gomti

Table 2. Sampling details of *Channa punctata* collected from rivers Ganga, Yamuna and Gomti

Table 3. Sampling details of *Clarias batrachus* collected from rivers Ganga, Yamuna and Gomti

Table 4. Sampling details of *Wallago attu* collected from rivers Ganga, Yamuna and Gomti

Table 5. Sampling details of *Sperata seenghala* collected from rivers Ganga, Yamuna and Gomti

Table 6. ANOVA for 29 morphometric characters of *Heteropeustes fossilis* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Table 7. Kaiser-Meyer-Olkin Measures of Sampling Adequacy and Bartlett Test of Sphericity for morphometric measurements of *Heteropeustes fossilis*

Table 8. Eigen values, percentage of variance and percentage of cumulative variance for 7 principal components in morphometric measurements of *Heteropeustes fossilis*

Table 9. Principal component loadings for truss morphometric characters of *Heteropeustes fossilis*

Table 10. Wilks’ lambda test for verifying differences among three stocks of *Heteropeustes fossilis* with morphometric measurements using DFA
Table 11. Contribution of morphometric characters to discriminant functions of *Heteropneustes fossilis*

Table 12. Number and percentage of individuals correctly classified into their original population for morphometric characters of *Heteropneustes fossilis* using DFA

Table 13. ANOVA for otolith elemental concentration in *Heteropneustes fossilis* collected from the river Ganga and its tributaries: river Yamuna and river Gomti

Table 14. Wilks’ lambda test for verifying differences among stocks of *Heteropneustes fossilis* with otolith chemistry based on DFA

Table 15. Contribution of otolith chemistry to the discriminant functions for *Heteropneustes fossilis*

Table 16. Number and percentage of individuals classified into each group for elemental profile of otoliths from the original matrix of *Heteropneustes fossilis*

Table 1.7 Comparison between classification accuracy of fish populations between the truss morphometry measurements and otolith chemistry

Table 18. ANOVA for 27 morphometric characters of *Channa punctata* from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Table 19. Kaiser-Meyer-Olkin Measures of Sampling Adequacy and Bartlett Test of Sphericity for morphometric measurements of *Channa punctata*

Table 20. Eigen values, percentage of variance and percentage of cumulative variance for 6 principal components in morphometric measurements of *Channa punctata*
Table 21. Principal component loadings for truss morphometric characters of *Channa punctata*

Table 22. Wilks’ lambda test for verifying differences among stocks of *Channa punctata* with morphometric measurements using DFA

Table 23. Contribution of morphometric measurements to the discriminant functions for *Channa punctata*

Table 24. Number and percentage of individuals correctly classified into their original population for morphometric characters of *Channa punctata* using DFA

Table 25. ANOVA for otolith elemental concentration of *Channa punctata* collected from the river Ganga and its tributaries: river Yamuna and river Gomti

Table 26. Wilks’ lambda test for verifying differences among stocks of *Channa punctata* with otolith chemistry based on DFA

Table 27. Contribution of morphometric measurements to the discriminant functions for *Channa punctata*

Table 28. DFA of the otoliths microchemistry showing the number and percentage of individuals classified into their original group from the original matrix of *Channa punctata*

Table 29. ANOVA for 30 morphometric characters of *Clarias batrachus* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Table 30. Kaiser-Meyer-Olkin Measures of Sampling Adequacy and Bartlett Test of Sphericity for morphometric measurements of *Clarias batrachus*

Table 31. Eigen values, percentage of variance and percentage of cumulative variance for 8 principal components in morphometric measurements of *Clarias batrachus*
Table 32. Principal component loadings for truss morphometric characters of *Clarias batrachus*

Table 33. Wilks' lambda test for verifying differences among stocks of *Clarias batrachus* with morphometric measurements using DFA

Table 34. Contribution of morphometric measurements to the discriminant functions for *Clarias batrachus*

Table 35. Number and percentage of individuals correctly classified into their original population for morphometric characters of *Clarias batrachus* using DFA

Table 36. ANOVA for otolith elemental concentration of *Clarias batrachus* collected from the river Ganga and its tributaries: river Yamuna and river Gomti

Table 37. Wilks' lambda test for verifying differences among stocks of *Clarias batrachus* with otolith chemistry based on DFA

Table 38. Contribution of otolith chemistry to discriminant functions of *Clarias batrachus*

Table 39. Results of DFA showing number and percentage of individuals classified into each group for elemental profile of otoliths from the original matrix of *Clarias batrachus*

Table 40. ANOVA for 31 morphometric characters of *Wallago attu* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Table 41. Kaiser-Meyer-Olkin Measures of Sampling Adequacy and Bartlett Test of Sphericity for morphometric measurements of *Wallago attu*

Table 42. Eigen values, percentage of variance and percentage of cumulative variance for 7 principal components in morphometric measurements of *Wallago attu*
Table 43. Principal component loadings for truss morphometric characters of *Wallago attu*

Table 44. Wilks' lambda test for verifying differences among three stocks of *Wallago attu* with morphometric measurements using DFA

Table 45. Contribution of morphometric characters to discriminant functions of *Wallago attu*

Table 46. Number and percentage of individuals correctly classified into their original population for morphometric characters of *Wallago attu* using DFA

Table 47. ANOVA for otolith elemental concentration in *Wallago attu* collected from the river Ganga and its tributaries: river Yamuna and river Gomti Rivers

Table 48. Wilks' lambda test for verifying differences among stocks of *Wallago attu* with otolith chemistry based on DFA

Table 49. Contribution of otolith chemistry to the discriminant functions for *Wallago attu*

Table 50. Number and percentage of individuals classified into each group for elemental profile of otoliths from the original matrix of *Wallago attu*

Table 51. ANOVA for 36 morphometric characters of *Sperata seenghala* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Table 52. Kaiser-Meyer-Olkin Measures of Sampling Adequacy and Bartlett Test of Sphericity for morphometric measurements of *Sperata seenghala*

Table 53. Eigen values, percentage of variance and percentage of cumulative variance for 8 principal components in morphometric measurements of *Sperata seenghala*
Table 54. Principal component loadings for truss morphometric characters of *Sperata seenghala*

Table 55. Wilks’ lambda test for verifying differences among three stocks of *Sperata seenghala* with morphometric measurements using DFA

Table 56. Contribution of morphometric characters to discriminant functions of *Sperata seenghala*

Table 57. Number and percentage of individuals correctly classified into their original population for morphometric characters of *Sperata seenghala* using DFA

Table 58. ANOVA for otolith elemental concentration in *Sperata seenghala* collected from the river Ganga and its tributaries: river Yamuna and river Gomti

Table 59. Wilks’ lambda test for verifying differences among stocks of *Sperata seenghala* with otolith chemistry based on DFA

Table 60. Contribution of otolith chemistry to the discriminant functions for *Sperata seenghala*

Table 61. Number and percentage of individuals classified into each group for elemental profile of otoliths from the original matrix of *Sperata seenghala*
LIST OF FIGURES

Fig. 1. Map showing the collection sites of fishes from the river Ganga and its tributaries: river Yamuna and river Gomti

Fig. 2. Locations of the 11 landmarks for constructing the truss network system of *H. fossilis*. Landmarks refer to (1) anterior tip of snout at upper jaw; (2) posterior most point of maxillary; (3) most posterior aspect of neurocranium; (4) origin of pectoral fin; (5) origin of dorsal fin; (6) origin of ventral fin; (7) insertion of dorsal fin; (8) origin of anal fin; (9) anterior attachment of dorsal membrane from caudal fin; (10) insertion of anal fin and (11) anterior attachment of ventral membrane from caudal fin

Fig. 3. Locations of 10 landmarks for constructing the truss network system of *Channa punctata*. Landmarks refer to (1) anterior tip of snout at upper jaw; (2) most posterior point of maxillary; (3) most posterior aspect of neurocranium; (4) origin of ventral fin; (5) origin of dorsal fin; (6) origin of anal fin; (7) insertion of dorsal fin; (8) insertion of anal fin; (9) anterior attachment of dorsal membrane from caudal fin; and (10) anterior attachment of ventral membrane from caudal fin

Fig. 4. Locations of the 11 landmarks for constructing the truss network system of *Clarias batrachus* Landmarks refer to (1) anterior tip of snout at upper jaw; (2) posterior most point of maxillary; (3) most posterior aspect of neurocranium; (4) insertion of pectoral fin; (5) origin of dorsal fin; (6) origin of ventral fin; (7) origin of anal fin; (8) insertion of dorsal fin; (9) insertion of anal fin; (10) anterior attachment of dorsal membrane from
caudal fin and (11) anterior attachment of ventral membrane from caudal fin

Fig. 5. Locations of the 11 landmarks for constructing the truss network system of *Wallago attu*. Landmarks refer to (1) anterior tip of snout at upper jaw; (2) posterior most point of maxillary; (3) most posterior aspect of neurocranium; (4) insertion of pectoral fin; (5) origin of dorsal fin; (6) origin of ventral fin; (7) insertion of dorsal fin; (8) origin of anal fin; (9) anterior attachment of dorsal membrane from caudal fin; (10) insertion of anal fin; and (11) anterior attachment of ventral membrane from caudal fin

Fig. 6. Locations of the 13 landmarks for constructing the truss network system of *Sperata seenghala*. Landmarks refer to (1) anterior tip of snout at upper jaw; (2) most posterior aspect of neurocranium; (3) insertion of pectoral fin; (4) origin of dorsal fin; (5) origin of ventral fin; (6) insertion of dorsal fin; (7) insertion of ventral fin; (8) origin of adipose fin; (9) origin of anal fin; (10) insertion of adipose fin; (11) insertion of anal fin; (12) anterior attachment of dorsal membrane from caudal fin; and (13) anterior attachment of ventral membrane from caudal fin

Fig. 7. Scree plot of principal components in morphometric measurements for *Heteropneustes fossilis*

Fig. 8. Scatterplot of the 1st 2 canonical discriminant scores from the discriminant function analysis (DFA) for morphometric characters of *Heteropneustes fossilis* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers
Fig. 9. Mean elemental concentrations and standard error for otoliths of *Heteropneustes fossilis* from Narora, Kanpur, Firozabad and Lucknow sampling sites

Fig. 10. Scatterplot of the 1st 2 canonical discriminant scores from the discriminant function analysis (DFA) for elemental profiles of otoliths of *Heteropneustes fossilis* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Fig. 11. Comparison of classification accuracy between truss morphometry and otolith chemistry of *Heteropneustes fossilis*

Fig. 12. Scree plot of principal component in morphometric measurements for *Channa punctata*

Fig. 13. Scatterplot of the 1st 2 canonical discriminant scores from the discriminant function analysis (DFA) for morphometric characters of *Channa punctata* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Fig. 14. Mean elemental concentrations and standard error for otoliths of *Channa punctata* from Narora, Kanpur, Firozabad and Lucknow sampling sites

Fig. 15. Scatterplot of the 1st 2 canonical discriminant scores from the discriminant function analysis (DFA) for elemental profiles of otoliths of *Channa punctata* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Fig. 16. Comparison of classification accuracy between truss morphometry and otolith chemistry of *Channa punctata*

Fig. 17. Scree plot of principal component in morphometric measurements for *Clarias batrachus*
Fig. 18. Scatterplot of the 1st 2 canonical discriminant scores from the discriminant function analysis (DFA) for morphometric characters of *Clarias batrachus* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Fig. 19. Mean elemental concentrations and standard error for otoliths of *Clarias batrachus* from Narora, Kanpur, Firozabad and Lucknow sampling sites

Fig. 20. Scatterplot of the 1st 2 canonical discriminant scores from the discriminant function analysis (DFA) for elemental profiles of otoliths of *Clarias batrachus* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Fig. 21. Comparison of classification accuracy between truss morphometry and otolith chemistry of *Clarias batrachus*

Fig. 22. Scatterplot of principal component in morphometric measurements for *Wallago attu*

Fig. 23. Scatterplot of the 1st 2 canonical discriminant scores from the discriminant function analysis (DFA) for morphometric characters of *Wallago attu* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Fig. 24. Mean elemental concentrations and standard error for otoliths of *Wallago attu* from Narora, Kanpur, Firozabad and Lucknow sampling sites

Fig. 25. Scatterplot of the 1st 2 canonical discriminant scores from the discriminant function analysis (DFA) for otolith chemistry of *Wallago attu* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Fig. 26. Comparison of classification accuracy between truss morphometry and otolith chemistry of *Wallago attu*
Fig. 27. Scree plot of principal component in morphometric measurements for *Sperata seeenghala*

Fig. 28. Scatterplot of the 1st 2 canonical discriminant scores from the discriminant function analysis (DFA) for morphometric characters of *Sperata seeenghala* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Fig. 29. Mean elemental concentrations and standard error for otoliths of *Sperata seeenghala* from Narora, Kanpur, Firozabad and Lucknow sampling sites

Fig. 30. Scatterplot of the 1st 2 canonical discriminant scores from the discriminant function analysis (DFA) for otolith chemistry of *Sperata seeenghala* collected from the Ganga River and its tributaries: the Yamuna and Gomti Rivers

Fig. 31. Comparison of classification accuracy between truss morphometry and otolith chemistry of *Sperata seeenghala*