CONTENT
CONTENT

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title page / Cover page</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>Declaration</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>Certificate</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Table of Content</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>List of tables</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>List of figures</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>List of appendices</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>List of symbols</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
<td>xix</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Soft computing 2
1.2 Artificial intelligence 2
1.2.1 Applications of AI 3
1.3 Medical Background of Thyroid Disease 3
1.3.1 Thyroid Disease Effect 5
1.3.2 Thyroid function in pregnancy & children 5
1.3.3 Major causes of Thyroid Disease 6
1.3.4 Current Diagnoses Practices 7
1.4 Expert system 8
1.5 Rule based system 9
1.6 Machine learning algorithms 11
1.6.1 Motivation towards Machine Learning 11
1.6.2 Applications 12
1.6.3 Classification of Algorithms 12
1.7 Research context and scope of the thesis 13
 1.7.1 Deliverables 13
 1.7.2 Boundaries 13
1.8 Problem statement 13
1.9 Organization of the thesis 14
1.10 Summary 15

2 Review of related literature 16-28
 2.1 Survey on thyroid expert advisory systems 17
 2.2 Glimpse on drawbacks 18
 2.3 Review on Classification Algorithms 18
 2.4 Review on Rough Set Theory & Machine Learning Algorithms 22
 2.5 Review on Ensemble Algorithms 24
 2.6 Summary 28

3 Thyroid Datasets 29-44
 3.1 Introduction 30
 3.2 Knowledge base 30
 3.2.1 If then else rules 34
 3.3 Simplified Sample datasets 35
 3.4 Thyroid information system 37
 3.5 UCITD Sample datasets 37
 3.5.1 If then else rules 41
 3.6 Classification of thyroid datasets 43
 3.7 Summary 44

4 A novel approach to diagnose TD using Rough set theory 45-64
 4.1 Introduction 46
 4.2 Proposed methodology 47
 4.3 Module design 47
4.4 Rough set theory 50
4.5 Artificial bee colony optimization 53
 4.5.1 Pseudo code of the ABC optimization 54
4.6 Particle swarm optimization 54
 4.6.1 Pseudo code of the PS optimization 54
4.7 Results and discussion 55
4.8 Conclusion 63

5 Improvised prophecy using regularization method 65-80
 5.1 Introduction 66
 5.2 Proposed methodology 66
 5.3 Regularization method 67
 5.3.1 Ridge regression algorithm 67
 5.3.2 Least absolute shrinkage and selection operator 70
 5.3.3 Example code for obtaining LASSO function using thyroid datasets 71
 5.4 Decisive factors 72
 5.4.1 Procedure for calculating decisive factors 73
 5.5 Module design 74
 5.6 Results and discussion 75
 5.7 Conclusion 79

6 Comparative study of datasets IETD & UCITD 81-96
 6.1 Introduction 82
 6.2 Analysis of variance 82
 6.2.1 Analysis of variance (Anova) 82
 6.2.2 Algorithm of Anova 83
 6.3 Experimentation 84
 6.3.1 Case study -1 86
 6.3.2 Case study -2 91
 6.4 Conclusion 96
7 Conclusion & Summary

7.1 Summary & Overview 98
7.2 Overview of Major Findings 99
7.3 Limitations for findings 100
7.4 Open Queries 101
7.5 Future scope 101

References 105-117

Authors publication list 118
Other publication list 121
Research Publications 123