CONTENTS

Acknowledgment \((\text{vi})\)

Abstract of the thesis \((\text{viii})\)

PART-I: CHARGE TRANSFER IN ION-ION COLLISION

CHAPTER-I

1. General Introduction: Past Work and Present Theory 1
2. The Schrödinger Equation 3
 - 2.1. Co-ordinate Set 4
 - 2.2. Potential Energy 4
 - 2.3. Exchange Scattering 5
3. Lippman-Schwinger Integral Equation 7
4. An Observation 10
5. Hypotheses 11
6. References 12

CHAPTER-II

Angular Differential Cross Sections for Electron Transfer in collision Between proton and He\(^+\)(1s) Ion

Abstract 13
1. Introduction 14
2. Mathematical Formulation 17
3. Results and Discussion 23
4. Conclusion 25
5. Appendix 26
6. References 38
7. Figures: Fig.2 39
 - Fig.3 40
 - Fig.4 41
 - Fig.5 42
 - Fig.6 43
 - Fig.7 44
PART-II : FIELD THEORETIC STUDY OF THE ATOMIC AND IONIC
COLLISION PHENOMENON

CHAPTER-I
 1.1. Objective of the thesis: in Part –II 48
2. Field Theory- Origin and Growth 50
 2.1. Matter and Field 50
 2.2. Field Theory in bound state problem 51
 2.3. Hypotheses 52
3. References 53

CHAPTER-II
Mathematical Preliminaries
1. Quantization 55
 1.1. Scalar Field 57
 1.2. Fermi-Dirac Field 58
2. Free Particle case 59
 2.1. Commutation relations 62
3. Bound Particle case 63
4. Relativistic Wave Equations 70
 4.1. Probability Current Density of K-G equations 71
 4.2. Dirac Equation 72
 4.3. Properties of Dirac Matrices 74
 4.4. Explicit Representation of Dirac Operators 74
 4.5. Plane Wave Solution for Dirac Particle 77
 4.6. Current and Charge Density : equation of continuity
 for Dirac Equation 81
 4.7. Covariance form of the Dirac Equation 82
 4.8. Properties of Gamma Matrices 85
 4.9. Dirac Particle in Electro-Magnetic Field 86
 4.10. Spin of the Dirac particle 88
5. Scalar Field 90
5.1. Creation and Destruction operators

5.2. The Invariant Delta Function

5.3. Vacuum Expectation Values of Real Scalar Field and Delta Functions

5.4. Chronological product

6. Dirac Field

6.1. Vacuum and Covariant Commutation Rules for Dirac Field

7. The Dirac Interaction Picture

8. S-Matrix

9. Reduction of S-Matrix

9.1. Wick's Theorem

9.2. Ordinary Pairing and Wick's Theorem for Normal Products

9.3. Chronological Pairing and Wick's Theorem for Chronological Products

10. Scattering Matrix Element and interaction Diagram

10.1. Example

10.1.1 Cross Section

11. References

CHAPTER-III

Ionization-Excitation of He by Fast Proton and Antiproton- A QED Approach

Abstract

1. Introduction

1.1. Theoretical Formalism- QED Approach

2. Mathematical Formalism

2.1. Definitions

2.2. Interaction Term

2.3. State Vectors of the Interacting System

2.4. The Amplitude

2.4.1 S-Matrix for the Shake-Up Mechanisms

2.4.2 S-Matrix for the Two-Step-One Mechanisms
2.4.3 S-Matrix for the Two-Step-Two Mechanisms

2.5. Cross Section for Ionization-Excitation (IE)

2.6. Ratio of the Differential Cross Sections for IE of He by Antiproton to that by equi-velocity Proton

3. Results and Discussions

4. Conclusion

5. Appendix : A

6. Appendix : B

7. References

8. Tables (1 & 2)

9. Figures : Fig.2
 Fig.3
 Fig.4

CHAPTER-IV

Single Ionization of He by High Energy proton and Antiproton – A QED Approach

Abstract

1. introduction

2. Mathematical Formulations

 2.1. Interaction Terms

 2.2. The Amplitude

3. Results and Discussions

 3.1. Low Energy Behaviour

4. Conclusion

5. Appendix

6. References

7. Table

8. Figures : Fig. 2
 Fig. 3

9. Figures : Fig. 4
CHAPTER-V

Projectile Charge Signature on Double Ionization of H₂-A QED Approach

Abstract 188

1. Introduction 189

2. Theory 192

2.1. Contribution from Second Order Feynman Diagram 195

2.2. Two-Step-Two Mechanism 197

2.3. Interference of SO and TS2 terms 198

2.4. Cross Section for Double Ionization (DI) 199

3. Results and Discussions 200

4. Conclusion 204

5. References 205

6. Tables: Table:1 207
 Table:2 208

7. Figures: Fig.3 209
 Fig.4 210
 Fig.5 211
 Fig.6 212
 Fig.7 213