CONCLUSIONS
Chemical analysis of Biscuit Factory waste have shown that it is a low fibre, moderately high fat feed ingredient. Its protein component compares well with that of other cereal grains usually used for compounding poultry feeds. Long term feeding trials have also shown that this ingredient when compounded with other poultry feed ingredients is well tolerated and encourages active growth as well as egg production in poultry. In the present study Biscuit factory waste was incorporated with other poultry feed ingredients at 33 per cent, 66 per cent and 100 per cent levels replacing equivalent amount of cereals from poultry diets. Such compounding of feed was found to be more or less isocaloric and isoproteinous with not only standard feeds available in the market but also amongst three treatments.

Feeding trials in chicks and growers have shown that the experimental birds attained the maximum live weight gain at 33 per cent replacement level amongst treatments at 8 weeks and 20 weeks respectively. Feed consumption and efficiency ratios of feed conversion in chicks and growers were also more or less similar under the treatments. Since live weight gain is considered to be one of the best criterion for the performance of pullets, 33 per cent replacement level is
In layers average hen house production and average egg weight were found to be highest at 33 per cent BFU replacement level. The average efficiency ratio in terms of egg mass production had the tendency to become narrowest also at 33 per cent replacement level. Since egg production is one of the best possible ways to judge productive efficiency of Layers, it appears from the results that 33 per cent BFU replacement level feed would be a desirable and suitable substitute for a good quality cereals supplemented feed.

The average feed consumption per bird per day was found to be somewhat lower at 66 per cent and 100 per cent BFU replacement levels. But the birds occasionally suffered from digestive disturbances with symptoms of reduced appetite and therefore the treatments (66 per cent and 100 per cent replacement levels) could not be considered ideal. It was also observed that average feed consumption per bird per day under the three experimental treatments (33 per cent, 66 per cent and 100 per cent replacement levels) were found to be lesser than that of standard feed (Hindusthan Lever) which was considered to be the best commercial feed available in India. Considering the above facts layer mash at 33 per cent BFU
replacement level was observed to be one of the most suitable diets for layers.

In case of Broilers the average liveweight gain was found to be highest at 66 per cent BFU replacement level. The average feed consumption per bird under all treatments were also found to be almost similar. The above results tended to show that 66 per cent BFU replacement level effecting optimum liveweight gain may be considered to be the most suitable diet for broilers as compared to standard feed (Hindlevers).

Since the average price of BFU is much lower as compared to cereals the incorporation of this ingredient considerably reduces the price of poultry feed vis-a-vis the poultry products. As a result of which a poultry grower may keep a substantial profit margin through the introduction of BFU as a substitute of cereals. Not only the poultry grower will have a greater profit margin but also such introduction of unconventional feeds will tend to reduce the present day tension upon the availability of cereals and will go a long way to minimise the gap between the availability and demand of cereals.

The usage of such wastes will also reduce to some extent pressure upon human food which are otherwise being utilised now a days for compounding poultry feed.
Considering all these facts it is concluded that BFU supplemented feed at 33 per cent replacement level for chicks, growers and layers and 66 per cent replacement level for broilers would be one of the ideal feed for poultry.