i. LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1:</td>
<td>Disorders of glycemia: etiologic types and stages.</td>
<td>6</td>
</tr>
<tr>
<td>FIGURE 2:</td>
<td>Etiology of type 1 diabetes. Genetic predisposition appears to be a prerequisite for the development of type 1 diabetes.</td>
<td>7</td>
</tr>
<tr>
<td>FIGURE 3:</td>
<td>Pathogenesis of Type-1 diabetes mellitus</td>
<td>11</td>
</tr>
<tr>
<td>FIGURE 4:</td>
<td>Pathogenesis of Type-2 diabetes mellitus</td>
<td>14</td>
</tr>
<tr>
<td>FIGURE 5:</td>
<td>Mechanism of insulin release in normal pancreatic beta cells</td>
<td>16</td>
</tr>
<tr>
<td>FIGURE 6:</td>
<td>Transverse section through the middle of the first lumbar vertebra, showing the relations of the pancreas.</td>
<td>19</td>
</tr>
<tr>
<td>FIGURE 7:</td>
<td>The duodenum and pancreas.</td>
<td>20</td>
</tr>
<tr>
<td>FIGURE 8:</td>
<td>Free radical is any atom or molecule which has an "unpaired electron" in the outer ring. An "unpaired electron" will also always mean that there is an odd number since "pairing" of electrons goes by 2s.</td>
<td>29</td>
</tr>
<tr>
<td>FIGURE 9:</td>
<td>Major cellular sources of ROS in living cells.</td>
<td>33</td>
</tr>
<tr>
<td>FIGURE 10:</td>
<td>Schematic drawing of the basic structure of human immunoglobulin molecule.</td>
<td>39</td>
</tr>
<tr>
<td>FIGURE 11:</td>
<td>Flexibility of the IgG molecule</td>
<td>43</td>
</tr>
<tr>
<td>FIGURE 12:</td>
<td>Schematic structure of the four human IgG subclasses. The four domains of the heavy chains and two domains of the light chain are shown.</td>
<td>47</td>
</tr>
<tr>
<td>FIGURE 13:</td>
<td>The role of IgG2 antibodies in two effector mechanisms resulting in complement bactericidal activity and/ or phagocytosis</td>
<td>51</td>
</tr>
</tbody>
</table>
FIGURE 14: Summary of the influence of the structure of the IgG subclasses on their effector functions.

FIGURE 15: Antigen Antibody interaction and Glycosylation of IgG

FIGURE 16: Biochemical reactions and common advanced glycation end product (AGE) compounds in vivo.

FIGURE 17: Cascade of events in cellular injury produced by AGE. Dietary protein is a source of preformed AGE and of amino acids that may form AGE in the circulation, kidney, and possibly other sites.

FIGURE 18: Glycation induces cross linking proteins

FIGURE 19: Hyperglycemia and diabetes microangiopathy

FIGURE 20: Schematic biological role of endothelial progenitor cells, their role in diabetes, and potentially available treatment aiming to restore their circulating concentration.

FIGURE 21: Soxhlet apparatus

FIGURE 22: Rhizomes of *Eulophia campestris*

FIGURE 23: Rhizomes of *Eulophia nuda*

FIGURE 24: Median cubital and cephalic veins of the arm

FIGURE 25: Blood sample collection from cephalic veins of the arm

FIGURE 26: Blood sample in serum separator tube (SST).

FIGURE 27: Centrifuge Machine
FIGURE 28: Cups inside Centrifuge Machine

FIGURE 29: Blood sample after Centrifugation

FIGURE 30: Serum in test tubes

FIGURE 31: Elution profile of normal human IgG on Protein-A agarose CL-4B affinity column.

FIGURE 32: UV absorption spectra of IgG incubated with 50 mM (—), 100 mM (—) and 150 mM (—) glucose for 7 days. IgG native (—) without glucose under identical experimental conditions.

FIGURE 33: UV absorption spectra of IgG incubated with 50 mM (—), 100 mM (—) and 150 mM (—) glucose for 20 days. IgG native (—) without glucose under identical experimental conditions.

FIGURE 34: UV absorption spectra of IgG incubated with 50 mM (—), 100 mM (—) and 150 mM (—) glucose for 30 days. IgG native (—) without glucose under identical experimental conditions.

FIGURE 35: UV absorption spectra of IgG incubated with 50 mM (—), 100 mM (—) and 150 mM (—) glucose for 40 days. IgG native (—) without glucose under identical experimental conditions.

FIGURE 36: UV absorption spectra of IgG incubated with 50 mM (—), 100 mM (—) and 150 mM (—) glucose for 50 days. IgG native (—) without glucose under identical experimental conditions.

FIGURE 37: UV absorption spectra of IgG incubated with 50 mM (—), 100 mM (—) and 150 mM (—) glucose for 60 days. IgG native (—) without glucose under identical experimental conditions.

FIGURE 38: Tryptophan fluorescence emission spectra of IgG incubated with 50 mM (—), 100 mM (—) and 150 mM (—) glucose for 20 days. Native IgG (—) without glucose under identical experimental conditions. All samples were in PBS, pH 7.4. The excitation wavelength was 295 nm.
FIGURE 39: Fluorescence emission spectra of IgG incubated with 50 mM (—), 100 mM (—) and 150 mM (—) glucose, for 20 days. Native IgG (—) without glucose under identical experimental conditions. All samples were in PBS, pH 7.4. The excitation wavelength was 280 nm.

FIGURE 40: Formation of ketoamine during incubation of IgG (1mg/ml) with glucose 50, 100 and 150 mM for 7 days (red), 20 days (green), 30 days (blue), 40 days (brown), 50 days (dark green), 60 days (sky blue) at 37°C. IgG (black) without glucose under identical experimental conditions.

FIGURE 41: Formation of carbonyl content during incubation of IgG (1mg/ml) with glucose 50, 100 and 150 mM for 7 days (red), 20 days (green), 30 days (blue), 40 days (brown), 50 days (dark green), 60 days (sky blue) at 37°C. IgG (black) without glucose under identical experimental conditions.

FIGURE 42: Thermal denaturation profile of native IgG (---) and pool sample of IgG glycated (...) with 50, 100, 150 mM glucose for 20 days at 37°C.

FIGURE 43: Elution profile of purified IgG from normal human (—), type 1 diabetes (—), type 2 diabetes (—) and Hyperlipidemia (—) patients, serum samples on protein-A agarose affinity column.

FIGURE 44: Comparison of carbonyl content in normal human serum proteins (bar 1), type 1 diabetes serum proteins (bar 2), type 2 diabetes serum proteins (bar 3), Hyperlipidemic serum proteins (bar 4), IgG from normal human subject (bar 5), IgG from type 1 diabetes (bar 6), IgG from type 2 diabetes (bar 7), IgG from Hyperlipidemic patient (bar 8).
FIGURE 45: Mallard Reaction inhibitory Activity by salep (Eulophia campestris) with TCA treatment method under in vitro conditions measured at 37°C temperature.

FIGURE 46: Mallard Reaction inhibitory Activity by salep (Eulophia campestris) with TCA treatment method under in vitro conditions measured at 50°C temperature.

FIGURE 47: Mallard Reaction inhibitory Activity by with Whitton Root (Eulophia Nuda) with TCA treatment method under in vitro conditions measured at 37°C temperature.

FIGURE 48: Mallard Reaction inhibitory Activity by Whitton Root (Eulophia Nuda) with TCA treatment method under in vitro conditions measured at 50°C temperature.

FIGURE 49: Cholesterol Assay Principle

FIGURE 50: Cholesterol Standard Curve.

FIGURE 51: Cholesterol Oleate tested in Total Cholesterol Assay Kit