Table of contents

List of figures vii

List of tables xv

Abbreviations xix

1 **INTRODUCTION** 1–9

2 **REVIEW OF LITERATURE** 10–31

 2.1 Biosurfactants: classification and importance 11

 2.2 Biosurfactants as antimicrobial agents 16

 2.2.1 Lipopeptides 17

 2.2.2 Glycolipids 18

 2.3 Rhamnolipid 18

 2.3.1 Biosynthesis of rhamnolipids 20

 2.3.2 Rhamnolipids as biopesticides 22

3 **MATERIALS AND METHODS** 32–64

 3.1 Isolation and screening of biosurfactant producing bacteria from hydrocarbon contaminated soil 33

 3.1.1 Collection of soil sample 33

 3.1.2 Isolation of bacteria from soil 34
3.1.3 Screening of biosurfactant producing bacteria

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.3.1 Drop-collapse technique</td>
<td>35</td>
</tr>
<tr>
<td>3.1.3.2 Surface tension measurement</td>
<td>36</td>
</tr>
</tbody>
</table>

3.2 Investigation of the antifungal properties of the biosurfactant produced by the screened isolates against *Fusarium verticillioides* and *Fusarium oxysporum* f. sp. *pisi* in vitro

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Fungal pathogens</td>
<td>37</td>
</tr>
<tr>
<td>3.2.2 In vitro antifungal activity against the fungal pathogens</td>
<td>38</td>
</tr>
</tbody>
</table>

3.3 Selection, identification, and characterization of the most efficient bacterial isolate and its biosurfactant having antifungal properties

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Selection & characterization of the most efficient bacterial isolate</td>
<td>39</td>
</tr>
<tr>
<td>3.3.1.1 Morphological, physiological and biochemical characteristics</td>
<td>39</td>
</tr>
<tr>
<td>3.3.1.2 Molecular characterization by 16S rDNA sequencing</td>
<td>43</td>
</tr>
<tr>
<td>3.3.2 Characterization of the biosurfactant</td>
<td>44</td>
</tr>
<tr>
<td>3.3.2.1 Extraction of biosurfactant from production media</td>
<td>44</td>
</tr>
<tr>
<td>3.3.2.2 Partial purification of extracted biosurfactant</td>
<td>46</td>
</tr>
<tr>
<td>3.3.2.3 Compositional analyses of biosurfactant</td>
<td>47</td>
</tr>
<tr>
<td>3.3.2.4 Quantification of rhamnolipid</td>
<td>50</td>
</tr>
<tr>
<td>3.3.2.5 Activity assay of biosurfactant</td>
<td>51</td>
</tr>
<tr>
<td>3.3.2.6 Stability studies</td>
<td>53</td>
</tr>
<tr>
<td>3.3.3 Optimization of biosurfactant production</td>
<td>53</td>
</tr>
<tr>
<td>3.3.3.1 Physical factors</td>
<td>54</td>
</tr>
<tr>
<td>3.3.3.2 Nutritional factors</td>
<td>55</td>
</tr>
</tbody>
</table>
3.3.4 Growth kinetics and biosurfactant production in optimal medium

3.3.5 Antifungal activity of the biosurfactants *in vitro*
 3.3.5.1 Selection of the most suitable carbon source for production of biosurfactant having the highest antifungal activity
 3.3.5.2 Test for antispore activity in potato dextrose broth amended with biosurfactant
 3.3.5.3 Test for antimycelial activity in potato dextrose agar amended with biosurfactants
 3.3.5.4 Ultramicroscopic study of biosurfactant treated mycelia
 3.3.5.5 Test for antifungal activity using maize and pea seeds
 3.3.5.6 Test for antagonism against *Fusarium verticillioides* on maize stalks

3.4 Pot trial of biosurfactant against the fungal pathogens on specific host plants and evaluation of *in planta* antifungal activity
 3.4.1 Plant bioassays for pea
 3.4.1.1 Root treatment with biosurfactant
 3.4.1.2 Seed treatment with biosurfactant
 3.4.2 Plant bioassays for maize
 3.4.2.1 Seed treatment with biosurfactant

3.5 Statistical analysis

4 RESULTS

4.1 Isolation and screening of biosurfactant producing bacterial isolates
4.1.1 Isolation of bacteria from soil 65
4.1.2 Screening of biosurfactant producing bacterial isolates 66

4.2 Investigation of the antifungal properties of the biosurfactant produced by the screened isolates against *Fusarium verticillioides* and *Fusarium oxysporum* f. sp. *pisi in vitro*

4.2.1 Isolation and identification of *Fusarium verticillioides* 68
4.2.2 *In vitro* antifungal activity against *Fusarium verticillioides* FS7 70 and *Fusarium oxysporum* f. sp. *pisi*

4.3 Selection, identification and characterization of the most efficient bacterial isolate and its biosurfactant having antifungal properties

4.3.1 Identification and characterization of the efficient isolate 71
4.3.2 Characterization of the biosurfactant 75
 4.3.2.1 Extraction and purification of biosurfactant 75
 4.3.2.2 Compositional analyses of biosurfactant 77
 4.3.2.3 Quantification of rhamnolipid 97
 4.3.2.4 Activity assay of the biosurfactants 98
 4.3.2.5 Stability studies 101
4.3.3 Optimization of biosurfactant production 103
 4.3.3.1 Physical factors 103
 4.3.3.2 Nutritional factors 107
4.3.4 Growth kinetics and biosurfactant production in optimal medium 109
4.3.5 *In vitro* antifungal activities of the biosurfactants 110
 4.3.5.1 Selection of the most suitable carbon source 110
 4.3.5.2 Antispore activity of the biosurfactants 111
4.3.5.3 Antimycelial activity of the biosurfactants 112
4.3.5.4 Ultramicroscopic study of mycelia treated with biosurfactant 114
4.3.5.5 Test for antifungal activity using maize and pea seeds 121
4.3.5.6 Test for antagonism against Fusarium verticillioides on maize stalks 123

4.4 Pot trial of biosurfactant against the fungal pathogens on specific host plants and evaluation of in planta antifungal activity
4.4.1 Plant bioassays for pea 123
 4.4.1.1 Root treatment 123
 4.4.1.2 Seed treatment 125
4.4.2 Plant bioassays for maize 129
 4.4.2.1 Seed treatment 129

5 DISCUSSION 132–158
5.1 Isolation and screening of biosurfactant producing bacteria from hydrocarbon contaminated soil 132
5.2 Antifungal properties of the biosurfactant produced by the screened isolates against Fusarium verticillioides & Fusarium oxysporum f. sp. pisi in vitro 134
5.3 Selection, identification and characterization of the most efficient bacterial isolate and its biosurfactant having antifungal properties
 5.3.1 Compositional analyses of the biosurfactant 135
 5.3.2 Quantification of rhamnolipid 139
5.3.3 Activity assay of the biosurfactants 139
5.3.4 Stability studies of the biosurfactants 142
5.3.5 Optimization of biosurfactant production 144
5.3.6 Growth kinetics and biosurfactant production in optimal medium 147
5.3.7 Antifungal activities of the biosurfactants in vitro 147
 5.3.7.1 Selection of the most suitable carbon source 147
 5.3.7.2 Antimycelial and antispore activity of the rhamnolipids 148
 5.3.7.3 Ultramicroscopic study of mycelia treated with rhamnolipids 152
 5.3.7.4 Test for antifungal activity using maize and pea seeds 152
 5.3.7.5 Test for antagonism against Fusarium verticillioides on maize stalks 154
5.4 Pot trial of biosurfactant against the fungal pathogens on specific host plants and evaluation of in planta antifungal activity 159–163
 5.4.1 Plant bioassays for pea 154
 5.4.2 Plant bioassays for maize 157

6 SUMMARY AND FUTURE PERSPECTIVES 159–163

REFERENCES 164–177

PUBLICATIONS