LIST OF FIGURES

2.2: Structural and geographic framework of Iran showing the main sutures, structural units and geographic areas (modified after Wilmsen, M et al., 2009).

2.3: (A) Palaeogeography and plate tectonic situation of the western Neotethys during the Callovian (modified from Thierry 2000).

2.4: Locality map of the Tabas Block in east-central Iran (modified after Wilmsen, M et al., 2009).

2.5: Lithostratigraphy of the Jurassic System on the northern and southern Tabas Block, as well as the western Lut Block, east-central Iran (after Wilmsen, M et al., 2009).

2.6: Geological sketch map of Kerman region, Central Iran (after Poole and Mirzaie Ataabadi, 2005).

2.7: Morousi fault in eastern block of area.

2.8: The exposure of dolomitic limestone in Permo-Triassic Formation.

2.9: Exposure fractured dolomitic limestone of the Permian-Trias Formation.

2.10: Phenomenon of onion skin weathering in sandstone.

2.11: Photomicrograph of litharenite consisting of quartz grains along with k-feldspar and plagioclase feldspars showing alteration to sericit.

2.12: Photomicrograph of litharenite showing the discrete grains of carbonate and veins of carbonate traversing the other mineral assemblages.

2.13: Photomicrograph of litharenite with angular to sub angular quartz grains and lithics exposed stretching with bold brown colour and chert in the form of fine grained quartz.

2.14: Photomicrograph of litharenite showing angular to sub angular quartz grains.

2.15: Field photograph showing sandstone with numerous dipping joints of Shemshak Formation.

2.16: Photomicrograph of coarse quartzarenite consisting of mono and polycrystalline quartz grains.

2.17: Photomicrograph showing sub-angular to sub-rounded quartz grains in sub-litharenite.

2.18: Photomicrograph of siltstone showing fine grained angular to sub angular quartz and feldspar grains.

2.19: Photomicrograph of siltstone exhibiting the presence angular to sub angular quartz grains and calcite vein.
2.20: Photomicrograph of fine grained shale traversed by quartz veins.

2.21: Field photograph showing the partially preserved fossil wood measuring 1m in length and 30cm in width in limestone.

2.22: Field photograph showing coal leach in d2 coal seam of Pbedana area.

2.23: Field photograph showing the presence of fire clay in d3 and d4 coal seams of Pbedana area.

2.24: Field photograph showing fire clay with yellowish colour in d3 coal seam of Pbedana area.

2.25: Field photograph showing thin Peat coal band (~10cm thickness) above d2 seam of Pbedana area.

2.26: Intercalated coal and peat coal seams designated as d2, d3 and d4 with showing variable thickness in Pbedana area.

2.27: Photomicrograph of limestone showing the angular to sub-angular quartz grains and microcrystalline lime slime.

2.28: Photomicrograph of siltstone consisting of angular to sub-angular and stretched quartz grains, the size of the particles range from 1/256–1/16 mm.

2.29: Field photograph showing the predominance of Ammonite fossils.

2.30: Field photograph showing fossil of true fern plant in between coal seam.

2.31: Field photograph showing fossiliferous limestone in Badamou Formation.

2.32: Photomicrograph of limestone showing the presence of superficial ooid micrite and intraclast of more than 2mm size.

2.33: Field photograph showing Ammonite fossils in limestones of Badamou Formation.

2.34: Field photograph showing abundant valves of crinoid fossils in limestones of Badamou Formation.

2.35: Field photographs showing the occurrence of Bivalves and Ammonite fossils in limestones of Badamou Formation.

2.36: Field photograph showing the occurrence quartzarenite at the boundaries of Hojedk and Badamou Formation.

3.1: Geochemical classification of sandstones. (a) Log \(\frac{\text{Fe}_2\text{O}_3}{\text{K}_2\text{O}} \) versus log \(\frac{\text{SiO}_2}{\text{Al}_2\text{O}_3} \) bivariate diagram. (b) \(\text{K}_2\text{O} \) wt.% versus \(\text{Na}_2\text{O} \) wt.% bivariate diagram.

3.2: Qt – F – L tectonic setting discrimination diagram (after Dickinson et al., 1983).

3.4: Provenance discrimination diagrams. (a) \(\text{TiO}_2 \) wt.% versus \(\text{Al}_2\text{O}_3 \) wt.% bivariate plot (after McLennan et al., 1980). (b) \(\text{TiO}_2 \) wt.% versus \(\text{Ni} \) (ppm) bivariate plot (after Floyd et al., 1989).
3.5: Bivariate diagrams depicting mobility of elements during weathering of feldspars. (a) (K\textsubscript{2}O/Na\textsubscript{2}O) wt.% versus PIA. (b) (K\textsubscript{2}O + Na\textsubscript{2}O) wt.% versus PIA.

3.6: Bivariate diagrams depicting mobility of Na, Ca and K during processing weathering of feldspars. (a) Na\textsubscript{2}O wt.% versus PIA. (b) CaO wt.% versus PIA. (c) K\textsubscript{2}O wt.% versus PIA.

3.7: A-CN-K ternary weathering diagram. A = Al\textsubscript{2}O\textsubscript{3}; CN = (CaO* + Na\textsubscript{2}O); K = K\textsubscript{2}O (all in molar proportions).

3.8: Chemical maturity of sandstones and their palaeoenvironment of deposition based on SiO\textsubscript{2} wt.% versus (Al\textsubscript{2}O\textsubscript{3} + K\textsubscript{2}O + Na\textsubscript{2}O) wt.% bivariate diagram (after Suttner and Dutta, 1986).

3.9: Tectonic setting discrimination diagrams based on major element composition of sandstones.

3.10: SiO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} versus K\textsubscript{2}O/Na\textsubscript{2}O bivariate age discrimination diagram for shales.

3.11: Distribution of PAAS normalized abundances of major and trace elements of shales.

3.13: Provenance indicating diagrams. (a) TiO\textsubscript{2} wt.% versus Ni (ppm) bivariate diagram (Floyd et al., 1989). (b) TiO\textsubscript{2} wt.% versus Al\textsubscript{2}O\textsubscript{3} wt.% bivariate diagram (McLennan et al., 1980).

3.14: Bivariate diagrams showing the mobility of Na, Ca, K and Mg during progressing weathering of lithocomponents of shales.

3.15: A – CN – K ternary diagram showing weathering trend. A = Al\textsubscript{2}O\textsubscript{3}; CN = (CaO* + Na\textsubscript{2}O); K = K\textsubscript{2}O (all in molar proportions).

3.16: SiO\textsubscript{2} wt.% versus (Al\textsubscript{2}O\textsubscript{3} + K\textsubscript{2}O + Na\textsubscript{2}O) wt.% bivariate palaeoclimate discrimination diagram (after Suttner and Dutta, 1986).

3.17: Tectonic setting discrimination diagram (Bhatia, 1983).

3.18 a,b,c,d,e,f : Diagrams for major elemental variation in Limestones of the study area.

4.1: Stratigraphic column of upper Triassic to lower Jurassic coal-bearing strata in Pabedana mine.

4.2: Flow chart of the analytical methods used by the Organization of Geology and Exploration of Minerals in Tehran, Iran, for the analysis of coal samples of Pabedana region.

4.3: Ternary diagram depicting forms of sulfur values (dry basis) for Pabedana coals.

4.4a,b,c: Photomicrograph of vitrinite macerals in the matrix of argillaceous mineral matter.

Fig. 4.5: Photomicrograph showing Sporinite which is spherical and oval shape.
4.6a,b: Photomicrographs showing fractures in vitrinite bands developed during escape of gases during coalification process.

4.7: Depositional conditions based on the maceral and mineral matter content (after Singh and Singh, 1996).

4.8 (A-D): XRD patterns of d2, d4, d5 and d6 coal samples. A-ankerite; Q - quartz; I- illite, K- kaolinite; H- hematite; M- muscovite; F- feldspar; P- pyrite; Ap- apatite; C- calcite.

5.1: Location map of coal washing plant and coal mines.

5.2: The entrance of a tunnel with 4 m height.

5.3: Surface and underground plan of coal mining process.

5.4: Schematic of a jackhammer system (Pang and Goldsmith, 1989).

5.5: Jackhammer (a) and handing perforator (b).

5.6: Telescope tripod that is separated from perforator.

5.7: Temp as cutting coal machine.

5.8: Raise boring machine for drilling raises less than 8m.

5.9: Jumbo drilling machine for drilling resistance rocks.

5.10: Hydraulic jacks for supporting tunnel walls.

5.11: LHD loader for loading materials in face wall.

5.12: Wood cutting machine.

5.13: Battery to charge locomotive.

5.14: Coal bunkers with conveyer belt.

5.15: Photograph showing coal washery units.

5.16: Feeding unit of the coal washery.

5.17: Storage yard of the coal around feeding unit.

5.18: Processing of coal washery in Zarand coal washing plant.

5.19: Vibration screen for separating grains less than 18mm.

5.20: Heavy media separator unit (1.7 g/cm³ density).

5.21: Jig unit which containing of three baths.

5.22: Bucket elevator which replace jig production.

5.23: Dynawhirlpool separators.

5.24: Spiral separators and hydrocyclones.
5.25: Processing of hydrocyclone.
5.26: Processing of Froth flotation cell.
5.27: Photograph showing part of flotation unit.
5.28: Drier platform in the vicinity concentrate plant.
6.1: Satellite map of coal washing plant and tailing pond in area.
6.2: Major element content of coal samples collected at different stages of coal washing.
6.3: Major element content of water samples collected at different stages of coal washing.
7.1: Plan showing the locations of 30 bore wells and regions of occurrence of groundwater zone-A and groundwater zone-B in the study area.
7.2: Spatial distribution of TDS in groundwaters.
7.3: Bivariate TDS versus Ca$^{2+}$ (a), Mg$^{2+}$ (b), Na$^{+}$ (c), K$^{+}$ (d), HCO$_3^-$ (e), SO$_4^{2-}$ (f), Cl$^-$ (g) and bivariate (K$^{+}$ + Na$^+$) versus Ca$^{2+}$ + Mg$^{2+}$ (h) and Mg$^{2+}$ versus Ca$^{2+}$ (i).
7.4: Piper trilinear and diamond-shaped diagrams (a, b and c) showing hydrochemical facies of groundwater zone-A, groundwater zone-B and tailings pond water.
7.5: Mechanism controlling the chemistry of groundwater zone-A (after Gibbs, 1970).
7.6: Bivariate (Ca$^{2+}$ + Mg$^{2+}$) versus HCO$_3^-$ (a), (Ca$^{2+}$ + Mg$^{2+}$) versus (HCO$_3^-$ + SO$_4^{2-}$) (b), (Ca$^{2+}$ + Mg$^{2+}$) versus total cations (Tz$^+$) (c) and Na$^+$ versus Cl$^-$ (d) plots of groundwater zone-A.
7.7: Mechanism controlling the chemistry of groundwater zone-B (after Gibbs, 1970).
7.8: Rating of groundwater on the basis of electrical conductivity and percent sodium. a: Groundwater zone-A; b: Groundwater zone-B (after Wilcox, 1948).
7.9: Spatial distribution of SAR in groundwaters.
7.10: Spatial distribution of SAR in groundwaters zone-A and B.
7.11: Classification of groundwater based on Permeability Index and total concentration of meq/L. A: Groundwater zone-A; B: Groundwater zone-B (after Doneen, 1964).
7.12: Spatial distribution of bicarbonate (HCO$_3^-$) in groundwaters.
8.1: Photograph showing part of tailings pond and coal washery.
8.2: Pollutants migration from coal tailings
8.3: Photographs show utilization of tailings water for growing pistachio trees.
8.4: Spatial distribution of Cu, Mn and Pb in groundwaters.