Dedication

This dissertation is dedicated to my parents. I would not have been able to seek my doctorate without your constant support and encouragement. Thank you for showing me to appreciate the gifts God has given to me and for helping me see how He has paved a way for me to use them. This thesis is also dedicated to my husband and beautiful son who have given me time patiently to do my research work. I really thank both of you.
Acknowledgement

I truly believe that people come into your life for a reason. There are no words to express the “thanks” that I owe to each of you or to describe the impact that you have had on my life.

Prof. M.S. Lalithamma: Thank you for your encouragement and high expectations throughout the time it has taken me to complete this study. Your wisdom, knowledge and direction assisted in keeping me motivated and determined to stay on the right course. You had a knack for transforming my anxieties into confidence, too.

Prof. K. Yeshodhara: Thank you for your insightful comments and offering valuable feedback. I am grateful for not only your advice and support but your concern for my well-being.

Prof. Ralf Schulze: Thank you for your assistance and cooperation. Your help with the qualitative and quantitative aspects of research helped me so very much. You were the foundation of all the supports. I am really always grateful to you.

The librarians and personnel of the Universities and Research centers: Thank you for your support. This research would not have been completed without your help.

My Friends: Thank you for paving the way. I am forever grateful for your encouragement, faith and support.

My Parents: Thank you for instilling in me the importance of education and for supporting me throughout this entire venture. Anything good in me is a direct reflection
of your parenting. I could never have made it this far without your love, encouragement, and belief in my abilities.

I am very grateful for the support, and guidance I have received throughout this process from my family. I would like to give a special thanks to my sisters and brothers. Their unconditional love, generosity, support, and faith in me were instrumental in helping me achieve this goal. I am eternally grateful.

Finally, I graciously thank God for putting all of these people in my life and for giving me the fortitude and character required staying the course.
Abstract

The purpose of this study was to compare two meta-analysis approaches, namely, Hunter – Schmidt meta-analytical approach and Glass meta-analytical approach with respect to their efficiency in yielding better estimates of effect size. This was achieved through the calculation and analysis of effect sizes yielded by the two approaches when applied on same set of data. Effect size standardizes the findings across the studies and is the unique quantification of research findings in meta-analysis that make it a powerful synthesis technique. Data set were derived from the studies on effectiveness of instructional programs on creativity in general as well as on its subcomponents, namely, originality, fluency, flexibility, and elaboration. Moreover, estimation of effect size of effectiveness of instructional programs on creativity in general using Comprehensive Meta-analysis Software was secondary objective proposed for the present research.

This study investigated whether or not effect sizes yielded by the approaches are significantly different in size. If significant difference is there, is that because of using different denominator in the formulas which the approaches proposed for accumulating effect size or correction for measurement error which has to be calculated in Hunter-Schmidt approach. Studies included were 42 experimental studies wherein two- group experimental design was used to study the effectiveness of instructional program on creativity and its specific components were chosen.

Most (69%) of the individual effect sizes of studies before correction for measurement error and after correction for measurement error were classified as ‘large’
using Cohen’s power table. 19% of the effect sizes yielded for the studies were fallen under ‘medium’ and 12% of the effect sizes yielded for the studies were ‘small’ in size. Hunter-Schmidt meta-analysis approach yielded larger effect sizes than those calculated using Glass meta-analysis approach, although both the overall mean effect sizes were big enough. Results of the study suggested the existence of statistically significant difference between overall mean effect sizes yielded by the approaches. Paired sample t-test revealed significant difference between the approaches before and after making correction for measurement error. Therefore, significant differences were found between the approaches in terms of effect sizes yielded for 42 studies on effectiveness of instructional programs on creativity in general and its specific components, namely, originality, flexibility, and elaboration before correction for measurement error. No significant difference was revealed in subcomponent of creativity, namely, fluency. Likewise, significant differences were found between the approaches in terms of overall mean effect sizes yielded for the 42 studies on effectiveness of instructional programs on creativity in general and its specific components after correction for measurement error. It was concluded that Hunter-Schmidt meta-analysis approach can be yielded better estimates of effect size. The observed difference between the approaches has been discussed in Chapter (IV).

An analysis regarding the effect of instructional programs on creativity (in general) through Comprehensive Meta-analysis Software determined that programs designed to enhance creativity actually work. The evidence presented in this study suggested that, in general, creativity can be enhanced to a high degree through instructional programs,
although the researcher did not investigate different degree of types of programs. Thus, the hypothesized link between instructional programs and creativity in previous meta-
analysis studies supported the results of this study. Evidence from both meta-analysis models –Fixed effect model and Random effect model- provided sufficient and interpretable effect sizes.
List of Figures

Figure 1. Literature review 31
Figure 2. Steps in the systematic review, meta-analysis, and survey research 34
Figure 3. Claimed strengths of meta-analysis 44
Figure 4. Formulae for calculation effect sizes 80
Figure 5. Correction for measurement error 81
Figure 6. Funnel plot – Fixed effect model 134
Figure 7. Funnel plot – Random effect model 135
List of the Tables

Table 4.1. List of the studies included for meta-analysis 87
Table 4.2. Observation made from the studies listed in Table 4.1. 91
Table 4.3. Data used for effect size calculation as an example 99
Table 4.4. Interpretation of effect sizes based on Cohen’s power table before correction for measurement error 103
Table 4.5. Descriptive statistics comparison for overall mean effect sizes creativity in general 107
Table 4.6. Significance difference between overall mean effect sizes before correction for measurement error 108
Table 4.7. Descriptive statistics comparison for overall mean effect sizes for components of creativity 110
Table 4.8. Significant difference between overall mean effect sizes for components of creativity before correction for measurement error 113
Table 4.9. Interpretation of effect sizes based on Cohen’s power table after correction for measurement error 117
Table 4.10. Descriptive statistics comparison for overall mean effect sizes –Creativity in General 120
Table 4.11. Significance difference between overall mean effect sizes after correction for measurement error 121
Table 4.12. Descriptive statistics comparison for overall mean effect sizes for components of creativity after correction for measurement error 122
Table 4.13. Significant difference between overall mean effect sizes for components of creativity after correction for measurement error 124
Table 4.14. Significant effectiveness of instructional program on creativity in general 129
Content

Dedication ii
Acknowledgement iii
Abstract v
List of Figures viii
List of Tables ix

Chapter I

1.1. Introduction 1
 1.1.1. Criticisms on significant testing 2
 1.1.2. Recommended Changes in practice 9
 1.1.3. Meta-analysis as a technique for integrating research findings 11
 1.1.4. Methods of meta-analysis (Approaches) 13
 1.1.5. Glass meta-analytical approach 14
 1.1.6. Hunter meta-analytical approach 16
 1.1.7. Glass approach Vs. Hunter-Schmidt approach 17

1.2. Need of the study 20

1.3. Area for application of meta-analysis 22

1.4. Statement of the problem 23

1.5. Objectives 24

1.6. Research questions 25

1.7. Hypotheses 26

1.8. Definition terms of the study 26

1.9. Delimitations of the study 29
Chapter II

2.1. Introduction 31
2.2. What is meta-analysis? 31
2.3. Steps in meta-analysis 33
2.4. Strengths of meta-analysis 40
2.5. The weakness of meta-analysis 45
2.6. Meta-analysis approaches 54
 2.6.1. First category (descriptive category) 54
 2.6.2. Second category 56
 2.6.3. Third category (psychometric approach) 58
2.7. Comparison of approaches in meta-analysis 61
2.8. Meta-analysis on Creativity 71

Chapter III

3.1. Introduction 73
 3.1.1. Meta-analysis 73
 3.1.2. Restatement of the problem 73
 3.1.3. Research design 74
 3.1.4. Variables of the study 74
 3.1.5. Database used for selecting data 76
 3.1.6. Inclusion of studies for meta-analysis 76
 3.1.7. Criteria of selection 77
 3.1.8. Sufficiency of the number of studies required for meta-analysis 78
 3.1.9. Coding of the studies 79
 3.1.10. Co-coding and inter coding reliability 79
3.1.11. Computations and analysis of effect sizes
3.1.12. Measurement error correction
3.1.13. Cohen’s classification for effect sizes
3.1.14. Calculation of mean effect sizes
3.1.15. Calculation of overall mean effect sizes
3.1.16. Comparison of overall mean effect sizes computed by the approaches
3.1.17. Tools

Chapter IV

4.1. Introduction
4.2. Descriptive of the studies on review
4.3. Comparison of two meta-analytical approaches
 4.3.1. Comparison of the approaches before correction for measurement error
 4.3.1.1. Interpretation of effect sizes based on Cohen Table
 4.3.1.2. Descriptive analysis effect sizes by the approaches
 4.3.1.3. Significant difference between overall mean effect sizes
 4.3.2. Comparison of the approaches after correction for measurement error
 4.3.2.1. Interpretation of effect sizes based on Cohen Table
 4.3.2.2. Descriptive analysis effect sizes by the approaches
 4.3.2.3. Significant difference between overall mean effect sizes
 4.3.3. Effectiveness of instructional program on creativity in general using CMA
4.4. Discussion and Interpretation
Chapter V

5.1. Introduction 143
5.2. Rational for the study 143
5.3. Statement of the problem 147
5.4. Objectives 147
5.5. Research questions 149
5.6. Hypotheses 149
5.7. Delimitations of the study 150
5.8. Methods and procedure 150
5.9. Findings 152
5.10. Limitations 156
5.11. Educational Implications 156
5.12. Recommendation for further research 157

References

Appendix

Academic Activities