LIST OF TABLES

<table>
<thead>
<tr>
<th>Table NO.</th>
<th>Title of the Table</th>
<th>Page NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.1</td>
<td>Stirring parameters</td>
<td>69</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Selected etchants for microscopic examination of Al alloys</td>
<td>73</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Tool Signature.</td>
<td>95</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Properties of Al/nanoclay composites.</td>
<td>104</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Microhardness (Hv) of Al and Al/nanoclay MMCs</td>
<td>119</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Electrical Resistivity (µ-Ω-cm) of Al and Al/Nanoclay MMCs.</td>
<td>123</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Calculations for shear modulus and Poisson’s ratio.</td>
<td>129</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Damping versus strain amplitude of the Al/Nanoclay composites.</td>
<td>131</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Shear modulus versus number of cycles of the Al/Nanoclay Composites.</td>
<td>132</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>Damping modulus versus number of cycles of the Al/Nanoclay Composites.</td>
<td>133</td>
</tr>
<tr>
<td>Table 6.8</td>
<td>Percentage linear change of Al/nanoclay composites.</td>
<td>147</td>
</tr>
<tr>
<td>Table 6.9</td>
<td>CTE (10^{-6} / °C) of Al/Nanoclay particulate Composites.</td>
<td>150</td>
</tr>
<tr>
<td>Table 6.10</td>
<td>Wear rate (mm³/km) of Al/Nanoclay MMCs of different loading and speed Conditions.</td>
<td>153</td>
</tr>
<tr>
<td>Table 6.11</td>
<td>Shows Vce (cm³/m² h) of Al/nanoclay MMCs in Tap water</td>
<td>166</td>
</tr>
<tr>
<td>Table 6.12</td>
<td>Shows Vce (cm³/m² h) of Al/Nanoclay MMCs in 1N H₂SO₄ +30% Alumina.</td>
<td>167</td>
</tr>
</tbody>
</table>
Table 6.13 \(V_{ce} \) (cm\(^3\)/m\(^2\) h) variation of Al/Nanoclay MMCs in Slurry of 0N H\(_2\)SO\(_4\) with various wt % alumina particulate at distance of 100km.

Table 6.14 \(V_{ce} \) (cm\(^3\)/m\(^2\) h) variations of Al/Nanoclay MMCs in Slurry of 1N H\(_2\)SO\(_4\) with various wt % alumina particulate at distance of 100 km.

Table 6.15 \(V_{ce} \) (cm\(^3\)/m\(^2\) h) variations of Al/Nanoclay MMCs in Slurry of without Alumina Particulate with various N of H\(_2\)SO\(_4\) at distance of 100 km.

Table 6.16 \(V_{ce} \) (cm\(^3\)/m\(^2\) h) variation of Al/Nanoclay MMCs in Slurry of with 30% Alumina particulate with various N of H\(_2\)SO\(_4\) at distance of 100 km.

Table 6.17 Experimentally obtained machining force (Tangential force) for Al matrix and Al/nanoclay MMCs.

Table 6.18 Number of chips/gram formation during machining of Al matrix and Al/nanoclay MMCs.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title of the Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 4.1</td>
<td>Comparison of the Young’s modulus determined Experimentally and through Eshelby’s analysis of nanoclay reinforced with either cylinder and spheres.</td>
<td>58</td>
</tr>
<tr>
<td>Fig. 5.1</td>
<td>XRD pattern of Nano NANOCLAY particulates</td>
<td>65</td>
</tr>
<tr>
<td>Fig. 5.2</td>
<td>SEM Photograph shows NANOCLAY particle</td>
<td>66</td>
</tr>
<tr>
<td>Fig. 5.3</td>
<td>TEM images for NANOCLAY particulates</td>
<td>67</td>
</tr>
<tr>
<td>Fig. 5.4</td>
<td>Schematic representation of the temperature-time sequence For Composite preparation</td>
<td>69</td>
</tr>
<tr>
<td>Fig. 5.5</td>
<td>Ageing Furnace</td>
<td>70</td>
</tr>
<tr>
<td>Fig. 5.6</td>
<td>Drawing of the experimental apparatus used for heat treatment</td>
<td>71</td>
</tr>
<tr>
<td>Fig. 5.7</td>
<td>Optical Microscope</td>
<td>73</td>
</tr>
<tr>
<td>Fig. 5.8</td>
<td>Transmission Electron Microscope</td>
<td>74</td>
</tr>
<tr>
<td>Fig. 5.9(a)</td>
<td>Universal Testing Machine</td>
<td>76</td>
</tr>
<tr>
<td>Fig. 5.9(b)</td>
<td>Tensile specimen with dimension</td>
<td>76</td>
</tr>
</tbody>
</table>
Fig. 5.10 Compression test specimen 78

Fig. 5.11 Microhardness tester 78

Fig. 5.12 Schematic diagram of four point probe instrument 82

Fig. 5.13 Schematic drawing of PUCOT 85

Fig. 5.14 Damping setup 85

Fig. 5.15 Schematic Diagram of the resonant bar damping system 88

Fig. 5.16 Thermal Mechanical Analyzer 89

Fig. 5.17 Pin-on-disc test rig 91

Fig. 5.18 Corrosive-erosive test rig 93

Fig. 5.19 CNC machined used for machinability tests 94

Fig. 6.1 Microstructure of A) Al 6061 alloy B) Al/10 %-nanoclay

C) Al/15 %- Nanoclay and D) Al/20 %-nanoclay composites

Respectively 99

Fig. 6.2 TEM images A) Al6061 and B) Al6061/20% Nanoclay composite at Peak aged

100

Fig. 6.3 TEM images A) Al6061 and B) Al6061 /20% Nanoclay composites at over aged 101
Fig. 6.4 DSC curves of A) Al6061 and B) Al6061 / 20% Nanoclay composites (5 Kmin$^{-1}$)

Fig 6.5 Typical Curve of Stress vs Strain of Aluminium Matrix Alloy Density of Al/Nanoclay Composites

Fig 6.5(a) The Effect of Wt% of Nanoclay and Particle Size 30±5 nm, 50±5 nm, 70±5 nm on Density of Al/Nanoclay Composites

Fig 6.6 The Effect of Wt% of Nanoclay and Particle Size 30±5 nm, 50±5 nm and 70±5 nm on Porosity of Al/Nanoclay Composites

Fig 6.7 The Effect of Wt% of Nanoclay and Particle Size 30±5 nm, 50±5 nm and 70±5 nm on yield strength of Al/Nanoclay Composites

Fig 6.8 The Effect of Wt% of Nanoclay and Particle Size 30±5 nm, 50±5 nm and 70±5 nm on Tensile Strength of Al/Nanoclay Composites

Fig 6.9 The Effect of Wt% of Nanoclay and Particle Size 30±5 nm, 50±5 nm and 70±5 nm on Young’s modulus of Al/Nanoclay Composites

Fig 6.10 The Effect of Wt% of Nanoclay and Particle Size 30±5 nm,
50±5 nm and 70±5 nm, on Compression Strength of Al/Nanoclay Composites

Fig 6.11 The Effect of Wt% of Nanoclay and Particle Size 30±5 nm
50±5 nm and 70±5 nm on % Elongation of Al/Nanoclay Composites

Fig. 6.12 Fracture surface of Al 6061 matrix alloy

Fig. 6.13 Fracture surface of Al6061/5% Nanoclay MMCs and size of
a) 30±5 nm b) 50±5 nm and c) 70 ± 5 nm

Fig. 6.14 Fracture surface of Al6061/10% Nanoclay MMCs and size of
a) 30±5 nm, b) 50±5 nm and c) 70 ± 5 nm

Fig. 6.15 Fracture surface of Al6061/15% nanoclay MMCs and size of
a) 30±5 nm, b)50±5 nm and c) 70 ± 5 nm

Fig. 6.16 Fracture surface of Al6061/20% Nanoclay MMCs and size of
a) 30±5, b) 50±5 nm and c) 70 ± 5 nm

Fig. 6.17(a) Effect of ageing time on microhardness of Al Matrix alloy
(Unreinforced)
Fig. 6.17(b) Effect of ageing time and Wt% of Nanoclay on microhardness of Al /5% nanoclay MMCs

Fig. 6.17(c) Effect of ageing time and Wt% of Nanoclay on microhardness of Al /10% nanoclay MMCs

Fig. 6.17(d) Effect of ageing time and Wt% of Nanoclay on microhardness of Al /15% nanoclay MMCs

Fig. 6.17(e) Effect of ageing time and Wt% of Nanoclay on microhardness of Al /20% nanoclay MMCs

Fig. 6.18(a) Effect of ageing time on Electrical resistivity of Al Matrix alloy (Unreinforced)

Fig. 6.18(b) Effect of ageing time and Wt% of Nanoclay on Electrical resistivity of Al /5% nanoclay MMCs.

Fig. 6.18(c) Effect of ageing time and Wt% of Nanoclay on Electrical resistivity of Al /10% nanoclay MMCs.

Fig. 6.18(d) Effect of ageing time and Wt% of Nanoclay on Electrical resistivity of Al /15% nanoclay MMCs.

Fig. 6.18(e) Effect of ageing time and Wt% of Nanoclay on Electrical
resistivity of Al /20% nanoclay MMCs

Fig. 6.19(a) The Effect of Wt% of Nanoclay on Calculated shear modulus,
Exp-Experimental, ROM- rules of mixture and % of Error

Fig. 6.19(b) The Effect of Wt% of Nanoclay on Calculated Poisson ratio,
Exp-Experimental, ROM- rules of mixture

Fig. 6.20 Damping versus strain amplitude of the Al6061/nanoclay Composites

Fig. 6.21 Trend of decreasing shear modulus of the composites with
increasing number of thermal cycles at 400°C.

Fig. 6.22 Trend of increasing damping modulus of the composites with
increasing number of thermal cycles at 400°C.

Fig.6.23(a) Damping capacity of Al6061/nanoclay composites with wt % of
reinforcement with temperature for as-quenched, aged conditions

Fig.6.23(b) Damping capacity of Al6061/nanoclay composites with wt.% of
reinforcement with temperature for 1 hour aged conditions
Fig. 6.23(c) Damping capacity of Al6061/nanoclay composites with wt % of reinforcement with temperature for 2 hours aged conditions

Fig. 6.23(d) Damping capacity of Al6061/nanoclay composites with wt % of reinforcement with temperature for 3 hours aged conditions

Fig. 6.24 Damping capacity of Al6061/nanoclay composites with wt % of reinforcement with aged conditions

Fig. 6.25 DSC thermograms of Al and Al/nanoclay reinforced MMCs for three hours aged condition at 153°C.

Fig. 6.26 Percent linear change versus temperature for the Al/nanoclay MMCs

Fig. 6.27 The Variation of CTE of Al/Nanoclay composite as a function of temperature

Fig. 6.28(a) Effect of wt. % of nanoclay and sliding speed on wear behavior of the Al/nanoclay composites at 20N

Fig. 6.28(b) Effect of wt.% of nanoclay and sliding speed on wear behavior of the Al/nanoclay composites at 30N

Fig. 6.28(c) Effect of wt. % of nanoclay and sliding speed on wear behavior
Fig. 6.28(d) Effect of wt. % of nanoclay and sliding speed on wear behavior of the Al/nanoclay composites at 40N

Fig. 6.29(a) Effect of wt. % of nanoclay and sliding load on wear behavior of the Al/nanoclay composites at 200 rpm

Fig. 6.29(b) Effect of wt. % of nanoclay and sliding load on wear behavior of the Al/nanoclay composites at 300 rpm

Fig. 6.29(c) Effect of wt. % of nanoclay and sliding load on wear behavior of the Al/nanoclay composites at 400 rpm

Fig. 6.29(d) Effect of wt. % of nanoclay and sliding load on wear behavior of the Al/nanoclay composites at 500 rpm

Fig. 6.30 Worn-out surface of base alloy and 20 % nanoclay at 100 rpm & 10 N

Fig. 6.31 Worn-out surface of base alloy and 20 % nanoclay at 300 rpm & 30 N

Fig. 6.32 Worn-out surface of base alloy and 20 % Nanoclay at 500 rpm & 50 N

Fig. 6.33 Vce rate vs. wear distance of Al/nanoclay composites in the
tap water

Fig. 6.34 Vce rate vs. wear distance of Al/nanoclay composites in the 1N H$_2$SO$_4$ + 30% alumina particulate

Fig. 6.35 Vce vs. amount of alumina in slurry for both Al 6061 matrix alloy and Al6061/nanoclay composites

Fig. 6.36 Vce vs amount of alumina in slurry for both Al 6061 matrix alloy and Al6061/nanoclay composites

Fig. 6.37 Vce vs. concentration of H$_2$SO$_4$ slurry for both Al 6061 matrix alloy and Al6061/nanoclay composites (without abrasive)

Fig. 6.38 Vce vs. concentration of H$_2$SO$_4$ slurry for both Al 6061 matrix alloy and Al6061/Nanoclay composites (with 30% alumina particulate)

Fig. 6.39(a) Typical plot of tangential force vs. feed rate for Al matrix alloy at Depth of cut 0.2 mm

Fig. 6.39(b) Typical plot of tangential force vs. feed rate for Al matrix alloy at Depth of cut 0.5 mm

Fig. 6.39(c) Typical plot of tangential force vs. feed rate for Al matrix alloy at Depth of cut 0.8 mm

Fig.6.39 (d) Typical plot of tangential force vs. feed rate for Al matrix alloy at Depth of cut 1 mm
Fig. 6.40 (b) Typical plot of tangential force vs. feed rate for Al/5%
 nanoclay composites at Depth of cut 0.5 mm 181

Fig. 6.40(c) Typical plot of tangential force vs. feed rate for Al/5%
 Nanoclay composites at Depth of cut 0.8 mm 182

Fig. 6.40 (d) Typical plot of tangential force vs. feed rate for Al/5%
 Nanoclay Composites at Depth of cut 1 mm 182

Fig. 6.41(a) Typical plot of tangential force vs. feed rate for Al/10%
 Nanoclay composites at Depth of cut 0.2 mm. 183

Fig. 6.41(b) Typical plot of tangential force vs. feed rate for Al/10%
 Nanoclay composites at Depth of cut 0.5 mm 183

Fig. 6.41(c) Typical plot of tangential force vs. feed rate for Al/10%
 Nanoclay Composites at Depth of cut 0.8 mm 184

Fig. 6.41(d) Typical plot of tangential force vs. feed rate for Al/10%
 Nanoclay Composites at Depth of cut 1 mm. 184

Fig. 6.42(a) Typical plot of tangential force vs. feed rate for Al/15%
 Nanoclay Composites at Depth of cut 0.2 mm 185

Fig. 6.42(b) Typical plot of tangential force vs. feed rate for Al/15%
Nanoclay composites at Depth of cut 0.5 mm. 185

Fig. 6.42(c) Typical plot of tangential force vs. feed rate for Al/15%

Nanoclay Composites at Depth of cut 0.8 mm. 186

Fig. 6.42(d) Typical plot of tangential force vs. feed rate for Al/15%

Nanoclay Composites at Depth of cut 1 mm 186

Fig. 6.43(a) Typical plot of tangential force vs. feed rate for Al/20%

Nanoclay composites at Depth of cut 0.2 mm. 187

Fig. 6.43(b) Typical plot of tangential force vs. feed rate for Al/20%

Nanoclay composites at Depth of cut 0.5 mm 187

Fig. 6.43(c) Typical plot of tangential force vs. feed rate for Al/20%

Nanoclay Composites at Depth of cut 0.8 mm. 188

Fig. 6.43(d) Typical plot of tangential force vs. feed rate for Al/20%

Nanoclay composites at Depth of cut 1 mm. 188

Fig. 6.44(a) Typical plot of Number of chips per gram vs. feed rate for

Al matrix alloy at Depth of cut 0.2 mm 189

Fig. 6.44(b) Typical plot of Number of chips per gram vs. feed rate for

Al matrix alloy at Depth of cut 0.5 mm 189
Fig. 6.44(c) Typical plot of Number of chips per gram vs. feed rate for
Al matrix alloy at Depth of cut 0.8 mm 190

Fig. 6.44(d) Typical plot of Number of chips per gram vs. feed rate for
Al matrix alloy at Depth of cut 1 mm 190

Fig. 6.45(a) Typical plot of Number of chips per gram vs. feed rate for
Al/5% Nanoclay composites at Depth of cut 0.2 mm 191

Fig. 6.45(b) Typical plot of Number of chips per gram vs. feed rate for
Al/5% Nanoclay composites at Depth of cut 0.5 mm 191

Fig. 6.45(c) Typical plot of Number of chips per gram vs. feed rate for
Al/5% Nanoclay composites at Depth of cut 0.8 mm 192

Fig. 6.45(d) Typical plot of Number of chips per gram vs. feed rate for
Al/5% Nanoclay composites at Depth of cut 1 mm 192

Fig. 6.46(a) Typical plot of Number of chips per gram vs. feed rate for
Al/10% Nanoclay composites at Depth of cut 0.2 mm 193

Fig. 6.46(b) Typical plot of Number of chips per gram vs. feed rate for
Al/10% Nanoclay composites at Depth of cut 0.5 mm 193

Fig. 6.46(c) Typical plot of Number of chips per gram vs. feed rate for
Al/10% Nanoclay composites at Depth of cut 0.8 mm 194

Fig. 6.46(d) Typical plot of Number of chips per gram vs. feed rate for

Al/10% Nanoclay composites at Depth of cut 1 mm 194

Fig. 6.47(a) Typical plot of Number of chips per gram vs. feed rate for

Al/15% Nanoclay composites at Depth of cut 0.2 mm 195

Fig. 6.47(b) Typical plot of Number of chips per gram vs. feed rate for

Al/15% Nanoclay composites at Depth of cut 0.5 mm 195

Fig. 6.47(c) Typical plot of Number of chips per gram vs. feed rate for

Al/15% Nanoclay composites at Depth of cut 0.8 mm 196

Fig. 6.47(d) Typical plot of Number of chips per gram vs. feed rate for

Al/15% Nanoclay composites at Depth of cut 1 mm 196

Fig. 6.48(a) Typical plot of Number of chips per gram vs. feed rate for

Al/20% Nanoclay composites at Depth of cut 0.2 mm 197

Fig. 6.48(b) Typical plot of Number of chips per gram vs. feed rate for

Al/20% Nanoclay composites at Depth of cut 0.5 mm 197

Fig. 6.48(c) Typical plot of Number of chips per gram vs. feed rate for

Al/20% Nanoclay composites at Depth of cut 0.8 mm 198
Fig. 6.48(d) Typical plot of Number of chips per gram vs. feed rate for Al/20% Nanoclay composites at Depth of cut 1 mm.