LIST OF FIGURES

- **Figure 2.1**: Structure of different components of lignocellulosic biomass
- **Figure 2.2**: (A) Structure of monosaccharides commonly present in xylan backbone
- **Figure 2.2**: (B) Structures of polymeric units of softwood and hardwood xylans.
- **Figure 2.3**: Schematic representation of process for bioethanol production from lignocellulosic biomass
- **Figure 2.4**: Schematic representation of enzymatic saccharification of cellulose.
- **Figure 4.1**: Effect of different concentrations of alkali on lignin removal from Rice straw at different time intervals
- **Figure 4.2**: Effect of different concentrations of alkali on lignin removal from Rice husk at different time intervals
- **Figure 4.3**: Effect of different concentrations of alkali on lignin removal from Wheat straw at different time intervals
- **Figure 4.4**: Effect of different concentrations of alkali on holocellulose enrichment in Rice Straw at different time intervals
- **Figure 4.5**: Effect of different concentrations of alkali on holocellulose enrichment in Rice Husk at different time intervals
- **Figure 4.6**: Effect of different concentrations of alkali on holocellulose enrichment in Wheat Straw at different time intervals
- **Figure 4.7**: Effect of different concentrations of Na-chlorite on lignin removal from Rice straw at different time intervals
- **Figure 4.8**: Effect of different concentrations of Na-chlorite on lignin removal from Rice Husk at different time intervals
• **Figure 4.9:** Effect of different concentrations of Na-chlorite on lignin removal from Wheat straw at different time intervals

• **Figure 4.10:** Effect of different concentrations of Na-chlorite on holocellulose enrichment in Rice Straw at different time intervals

• **Figure 4.11:** Effect of different concentrations of Na-chlorite on holocellulose enrichment in Rice Husk at different time intervals

• **Figure 4.12:** Effect of different concentrations of Na-chlorite on holocellulose enrichment in Wheat Straw at different time intervals

• **Figure 4.13:** Effect of different concentrations of H₂O₂ on lignin removal from Rice straw at different time intervals

• **Figure 4.14:** Effect of different concentrations of H₂O₂ on lignin removal from Rice husk at different time intervals

• **Figure 4.15:** Effect of different concentrations of H₂O₂ on lignin removal from wheat straw at different time intervals

• **Figure 4.16:** Effect of different concentrations of H₂O₂ on holocellulose enrichment in Rice Straw at different time intervals

• **Figure 4.17:** Effect of different concentrations of H₂O₂ on holocellulose enrichment in Rice Husk at different time intervals

• **Figure 4.18:** Effect of different concentrations of H₂O₂ on holocellulose enrichment in Wheat Straw at different time intervals

• **Figure 4.19:** Lignin removal from Rice straw with *P.chrysosporium*

• **Figure 4.20:** Lignin removal from Rice husk with *P.chrysosporium*

• **Figure 4.21:** Lignin removal from Wheat straw with *P.chrysosporium*

• **Figure 4.22:** Holocellulose gain from Rice straw with *P.chrysosporium*

• **Figure 4.23:** Holocellulose gain from Rice husk with *P.chrysosporium*
• **Figure 4.24**: Holocellulose gain from Wheat straw with *P.chrysosporium*

• **Figure 4.25**: Schematic representation of pretreatment strategies used in this study

• **Figure 4.26**: Time course of saccharification of delignified lignocellulosic biomass with different fungi.

• **Figure 4.27**: Time course of fungal saccharification of delignified lignocellulosic biomass with different substrates.

• **Figure 4.28**: Time course of bacterial saccharification of delignified lignocellulosic biomass with different substrates.

• **Figure 4.29**: A comparison of sugar released by fungi and bacteria with time course.

• **Figure 4.30**: Effect of different concentrations of microorganisms (fungi) on saccharification of delignified lignocellulosic biomass.

• **Figure 4.31**: Effect of different concentrations of microorganisms (fungi) on microbial saccharification of delignified lignocellulosic biomass with different substrates.

• **Figure 4.32**: Effect of different concentrations of microorganisms (bacteria) on the delignified lignocellulosic biomass.

• **Figure 4.33**: A comparison of sugar released by fungi and bacteria with different concentrations of microorganisms

• **Figure 4.34**: Effect of different substrates consistencies on microbial saccharification of delignified lignocellulosic biomass with different fungi.

• **Figure 4.35**: Effect of different substrates consistencies on microbial (fungal) saccharification of delignified lignocellulosic biomass with different substrates.

• **Figure 4.36**: Effect of different substrates consistencies on microbial (bacterial) saccharification of delignified lignocellulosic biomass with different substrates.

• **Figure 4.37**: A comparison of sugar released by fungi and bacteria with different substrate consistencies
- **Figure 4.38**: Effect of temperature on microbial saccharification of delignified lignocellulosic biomass with different microorganisms (fungal).
- **Figure 4.39**: Effect of temperature on microbial (fungal) saccharification of delignified lignocellulosic biomass with different substrates.
- **Figure 4.40**: Effect of temperature on microbial (bacterial) saccharification of delignified lignocellulosic biomass with different substrates.
- **Figure 4.41**: A comparison of sugar released by fungi and bacteria with different temperatures.
- **Figure 4.42**: Effect of different agitation rates on microbial saccharification of delignified lignocellulosic biomass with different microorganisms (fungal).
- **Figure 4.43**: Effect of different agitation rates on microbial (fungal) saccharification of delignified lignocellulosic biomass with different substrates.
- **Figure 4.44**: Effect of different agitation rates on microbial (bacterial) saccharification of delignified lignocellulosic biomass with different substrates.
- **Figure 4.45**: A comparison of sugar released by fungi and bacteria with different agitation rates.
- **Figure 4.46**: Effect of different pH on microbial saccharification of delignified lignocellulosic biomass with different microorganisms (fungal).
- **Figure 4.47**: Effect of different pH on microbial (fungal) saccharification of delignified lignocellulosic biomass with different substrates.
- **Figure 4.48**: Effect of different pH on microbial (bacterial) saccharification of delignified lignocellulosic biomass with different substrates.
- **Figure 4.49**: A comparison of sugar released by fungi and bacteria with different pH values.
- **Figure 4.50**: Effect of different surfactants on microbial (fungal) saccharification of
delignified lignocellulosic biomass with different microorganisms.

- **Figure 4.51**: Effect of different surfactants on microbial (fungal) saccharification of delignified lignocellulosic biomass with different substrates.

- **Figure 4.52**: Effect of different surfactants on microbial (bacterial) saccharification of delignified lignocellulosic biomass with different substrates.

- **Figure 4.53**: A comparison of sugar released by fungi and bacteria with different surfactants.

- **Figure 4.54**: Effect of Tween 80 concentrations on microbial (fungal) saccharification of delignified lignocellulosic biomass with different microorganisms.

- **Figure 4.55**: Effect of Tween 80 concentration on microbial (fungal) saccharification of delignified lignocellulosic biomass with different substrates.

- **Figure 4.56**: Effect of different concentrations of Tween 80 on microbial (bacterial) saccharification of delignified lignocellulosic biomass with different substrates.

- **Figure 4.57**: A comparison of sugar released by fungi and bacteria with different concentrations of Tween 80.

- **Figure 4.58**: Box plot for time taken by the microorganisms for saccharification.

- **Figure 4.59**: Normal Q-Q plot of time taken by the microorganisms for saccharification.

- **Figure 4.60**: Time course of ethanol production from detoxified acid hydrolysate using *S. cerevisiae* at 30°C.

- **Figure 4.61**: Effect of initial pH of fermentation medium on the ethanol production by *S. cerevisiae* at 30°C in 7 days.

- **Figure 4.62**: Effect of initial pH of fermentation medium on sugar consumption by *S. cerevisiae* at 30°C.

- **Figure 4.63**: Effect of incubation temperature on ethanol production from fermentation.
medium (pH 5.5) using *S. cerevisiae* in 7 days.

- **Figure 4.64:** Effect of incubation temperature on sugar consumption from fermentation medium (pH 5.5) using *S. cerevisiae*.

- **Figure 4.65:** Effect of inoculum size on the ethanol production from fermentation medium (pH 5.5) using *S. cerevisiae* at 30°C in 7 days.

- **Figure 4.66:** Effect of inoculum size on the sugar consumption from fermentation medium (pH 5.5) using *S. cerevisiae* at 30°C.

- **Figure 4.67:** Effect of inoculum age on the biomass production from fermentation medium (pH 5.5) using *S. cerevisiae* at 30°C in 7 days.

- **Figure 4.68:** Effect of inoculum age on the biomass production from fermentation medium (pH 5.5) using *S. cerevisiae* at 30°C.

- **Figure 4.69:** Effect of soybean meal on the ethanol production from fermentation medium (pH 5.5) using *S. cerevisiae* at 30°C in 7 days.

- **Figure 4.70:** Effect of soybean meal on the sugar consumption from fermentation medium (pH 5.5) using *S. cerevisiae* at 30°C.

- **Figure 4.71:** Time course of ethanol production from microbial enzymatic hydrolysate using *Zymomonas mobilis* at 30°C.

- **Figure 4.72:** Effect of initial pH of fermentation medium on the ethanol production by *Zymomonas mobilis* at 30°C in 7 days.

- **Figure 4.73:** Effect of initial pH of fermentation medium on sugar consumption by *Zymomonas mobilis* at 30°C.

- **Figure 4.74:** Effect of incubation temperature on ethanol production from fermentation medium (pH 6.0) using *Zymomonas mobilis* in 7 days.

- **Figure 4.75:** Effect of incubation temperature on sugar consumption from fermentation medium (pH 6.0) using *Zymomonas mobilis*.
• **Figure 4.76:** Effect of inoculum size on the ethanol production from fermentation medium (pH 6.0) using *Zymomonas mobilis* at 35°C in 7 days.

• **Figure 4.77:** Effect of inoculum size on the sugar consumption from fermentation medium (pH 6.0) using *Zymomonas mobilis* at 35°C.

• **Figure 4.78:** Effect of inoculum age on the ethanol production from fermentation medium (pH 6.0) using *Zymomonas mobilis* at 35°C in 7 days.

• **Figure 4.79:** Effect of inoculum age on the sugar consumption from fermentation medium (pH 6.0) using *Zymomonas mobilis* at 35°C.

• **Figure 4.80:** Effect of soybean meal on the ethanol production from fermentation medium (pH 6.0) using *Zymomonas mobilis* at 35°C in 7 days.

• **Figure 4.81:** Effect of soybean meal on the sugar consumption from fermentation medium (pH 6.0) using *Zymomonas mobilis* at 35°C.

• **Figure 4.82:** Normal Q-Q plot of time taken by the *Zymomonas mobilis* for fermentation

• **Figure 4.83:** Box plot for time taken by the microorganisms for fermentation.
LIST OF TABLES

- **Table 2.1**: Availability of plant biomass (lignocellulosic material) biomass data at national level
- **Table 2.2**: Chemical composition of various lignocellulosic residues
- **Table 2.3**: List of microorganisms that can ferment pentose sugars
- **Table 2.4**: Summaries of the recent work on lignocellulose hydrolysate fermentation using non-recombinant strains of microorganisms.
- **Table 2.5**: Microorganisms fermenting hexose sugars to ethanol
- **Table 2.6**: List of pentose utilizing recombinant Yeasts and Bacterial strains
- **Table 2.7**: List of major policies and plans for bioethanol worldwide
- **Table 2.8**: List of few advanced biofuels project including annual capacity (million gallons) by company for 2009-2013.
- **Table 4.1**: Composition of Lignocellulosic residue
- **Table 4.2**: Effect of acid treatment on the chemical composition of Rice straw at varied time intervals
- **Table 4.3**: Effect of acid treatment on the chemical composition of Rice husk at varied time intervals
- **Table 4.4**: Effect of acid treatment on the chemical composition of Wheat straw at varied time intervals
- **Table 4.5**: Microbial enzymatic hydrolysis of pretreated (under optimized conditions) Lignocellulosic Substrate
- **Table 4.6**: Effect of substrate consistencies on hydrolysis of lignocellulosic substrate carried out using 1% H2SO4 at 120°C for 30 minutes.
• **Table 4.7**: Effect of different temperature on hydrolysis of lignocellulosic substrate using 1.0 % sulfuric acid for 30 minutes

• **Table 4.8**: Effect of acid concentrations on hydrolysis of lignocellulosic substrate carried out at 120°C for 30 minutes.

• **Table 4.9**: Effect of pretreatment time on the hydrolysis of lignocellulosic substrate using 3.0 % (v/v) sulfuric acid at 120°C

• **Table 4.10**: Effect of substrate consistencies on the delignification of acid hydrolysed lignocellulosic substrate

• **Table 4.11**: Effect of different temperatures on the delignification of acid hydrolysed lignocellulosic substrate using 1.0 % (w/v) sodium chlorite for 30 minutes

• **Table 4.12**: Effect of sodium chlorite concentrations on the delignification of lignocellulosic substrate carried out at 120°C for 30 minutes.

• **Table 4.13**: Effect of pretreatment time on the delignification of acid hydrolysed lignocellulosic substrate using 4.0 % (v/v) sodium chlorite at 120°C

• **Table 4.14**: Effect of Neutralisation at pH 10.0 on the detoxification of acid hydrolysate of Rice straw

• **Table 4.15**: Effect of Neutralisation at pH 10.0 on the detoxification of acid hydrolysate of Rice Husk

• **Table 4.16**: Effect of Neutralisation at pH 10.0 on the detoxification of acid hydrolysate of wheat straw

• **Table 4.17**: Effect of Overliming at pH 10.0 on the detoxification of acid hydrolysate of Rice straw.

• **Table 4.18**: Effect of Overliming at pH 10.0 on the detoxification of acid hydrolysate of Rice Husk

• **Table 4.19**: Effect of Overliming at pH 10.0 on the detoxification of acid hydrolysate
of Wheat Straw

- **Table 4.20:** Comparative analysis of different detoxification strategies on the removal of inhibitors from the acid hydrolysate of lignocellulosic substrate

- **Table 4.21:** Correlation of concentration of microorganism, substrate consistency, temperature, agitation rate, pH, surfactant and surfactant’s concentration with time.

- **Table 4.22:** One way analysis of variance for time taken by the microorganisms for saccharification

- **Table 4.23:** Homogeneous subsets test for time taken by the microorganisms for saccharification

- **Table 4.24:** Test of Homogeneity of variance for saccharification

- **Table 4.25:** Effect of different concentrations of yeast nitrogen base on the fermentation of detoxified acid hydrolysate

- **Table 4.26:** Correlation of temperature, pH, inoculum size, inoculums age and soybean meal.

- **Table 4.27:** Effect of different concentrations of yeast nitrogen base on the fermentation of microbial enzymatic hydrolysate

- **Table 4.28:** Correlation of temperature, pH, inoculum size, inoculums age and soybean meal.

- **Table 4.29:** One way analysis of variance for time taken by the microorganisms for fermentation