Contents

Abstract .. I
Acknowledgments .. III
Contents .. V
List of Figures .. VIII
List of Tables .. XV
List of Symbols ... XVII
List of Abbreviations ... XIX

**Chapter 1 ** Introduction
1.1 Background ... 1
1.2 Research Motivation ... 3
1.3 Objectives of the work .. 4
1.4 Outline of the Thesis ... 5

**Chapter 2 ** Literature Review
2.1 Introduction .. 7
2.2 Multifingered Robot Gripper (MRG) ... 8
 2.2.1 Comparison of existing types of MRG ... 14
2.3 Sensors used for the MRG ... 23
2.4 Vision system for MRG ... 26
2.5 Modeling & Simulations of robot gripper .. 28
2.6 Biomimetic Design Approach ... 33
2.7 Gripper Forces Determination and Kinetostatic analysis 36
2.8 Controlling and System Programming .. 38

**Chapter 3 ** Theory and Background Details
3.1 Introduction ... 41
 3.1.1 Development of the gripper ... 41
 3.1.2 Tactile sensation for effective grasping ... 42
 3.1.3 Vision System feedback for dexterous grasping 42
 3.1.4 Study of Human Hand for Biomimetic Approach 43
 3.1.5 Under-actuated Robot gripper for Dexterous grasping 44
3.2 Anatomical Study of Bio-Mimetic Grasping .. 45
 3.2.1 The Anatomical Frame: Finger Bones and Articulations 46
3.3 Material handling by Robotic Grippers in industries 48

**Chapter 4 ** Actuators, Sensors and Control system for MRG
4.1 Introduction ... 50
4.2 The Actuators for MRG ... 50
4.2.1 Types of actuators used for MRG at International level .. 50
4.2.2 Details and discussions of the selected electric Motors .. 51
4.3 The Sensors for the MRG .. 51
 4.3.1 Need for the Sensors, on the selected fingers of MRG .. 52
 4.3.2 Types of Sensors used for MRG at International Level .. 52
 4.3.3 Introduction to selected types and criterion for Selection of Sensors 52
 4.3.3.1 Piezoelectric Ceramics (Soft pzt crystalline force sensors) 53
 A) Principal of Operation ... 53
 B) Calibration of the sensors .. 55
 C) Design and details of calibration set-up ... 57
 D) Results .. 63
 E) Conclusions ... 64
 4.3.3.2 FlexiForce Sensor
 A) Principal of Operation ... 65
 B) Calibration of the sensors .. 68
 C) Design and details of calibration set-up ... 68
 D) Results and Discussions .. 70
 E) Conclusions of calibration and testing ... 76
 4.3.3.3 Ultrasonic Sensor
 A) Introduction .. 77
 B) Technical Specification of Ultrasound Sensors 77
 C) Procedure for Measuring the Distance using Ultrasound Sensor 78
 4.3.3.4 Optical Proximity Sensors
 A) Introduction .. 78
 B) Technical Specification of Sensors ... 79
 C) Operating Procedure ... 79
 4.3.3.5 Accelerometer
 A) Introduction .. 80
 B) Technical Specification of Sensors ... 81
 C) Operating Procedure ... 81
 4.3.3.6 Vision Sensors
 A) Introduction .. 82
 B) Technical Specification of Sensors ... 82
 C) Operating Procedure ... 83
 4.3.3.7 IPMC force sensors ... 83
4.4 The Control System of MRG .. 83
 4.4.1 Details of the controlling system ... 83
 4.4.2 Softwares used for Control .. 84
 4.4.3 Electronic Circuit Details ... 85
 4.4.4 Control Algorithm and the planned strategies ... 86
 4.4.5 Problems at control and remedies suggested .. 87

Chapter 5 Design of critical parts of MRG and other dimensional details

 5.1 Introduction ... 91
 5.2 Principal of operation of MRG Mechanism ... 91
5.3 Details of MRG Design & Mechanism ... 95
 5.3.1 Torque transmission from Motor to Distal Phalange 97
5.4 Design of Critical Components .. 97
 5.4.1 Design of Coupling ... 98
 5.4.2 Design of Power Screw ... 100
 5.4.3 Design of Critical Pin at joint 2 ... 102
 5.4.4 Dimensional Details of all the remaining part ... 103
5.5 Design individuality of MRG ... 105

Chapter 6 Diagnostic Analysis of MRG system

6.1 Introduction ... 106
6.2 Static Analysis of MRG ... 106
 6.2.1 Gripping Forces at the finger tip ... 107
 6.2.2 Torque required for grasping the object .. 111
6.3 Virtual Motion Analysis of MRG .. 115
 6.3.1 Mathematical Modeling of MRG ... 115
 6.3.2 Simulation of MRG .. 118
 6.3.2.1 Need of Simulation ... 118
 6.3.2.2 Introduction to Sim Mechanics .. 118
 6.3.2.3 Reason to use Sim Mechanics for MRG simulation 119
 6.3.2.4 Steps to make and run a MRG model in Sim Mechanics 120
 6.3.2.5 Visualizing the animated MRG system ... 120
 6.3.3 Simulation based analysis of MRG using its solid modeling 121
 6.3.3.1 Introduction to Solid Works ... 121
 6.3.3.2 Modeling of components .. 121
 6.3.3.3 Physical simulation using Solid Works ... 121
 6.3.3.4 Advantages of solid modeling in Solid Works 122
 6.3.3.5 Mechanical visualization of gripper during simulation 124
 6.3.3.6 Analysis of various graphical output .. 126
 6.3.3.7 Summary of observations .. 132

Chapter 7 Confirmative Analysis for MRG Design

7.1 Introduction ... 136
7.2 Introduction to the Forward Kinematics and Dynamic Analysis 136
 7.2.1 Kinematics of MRG ... 136
 7.2.2 Dynamics of MRG .. 139
7.3 Finite Element Analysis of selected parts ... 141
 7.3.1.1 Introduction of FEA for MRG .. 141
 7.3.1.2 Limitations of FEA .. 142
 7.3.1 FEA of Proximal phalange ... 142
 7.3.2 FEA of L- Plate ... 144
 7.3.3 FEA of Angle plate ... 145
 7.3.4 Summary of FEA Results .. 147
7.4 Mode shape analysis of complete MRG Assembly ... 148
7.5 Shape Optimization of single finger and complete system 154
7.5.1 Introduction .. 154
7.5.2 Mathematical Algorithm .. 155
7.5.3 Optimization Problem Definition for MRG system ... 156
 7.5.4.1 Defining the FEA for MRG ... 156
 7.5.4.2 Objective Function .. 156
 7.5.4.3 Design Variable .. 157
 7.5.4.4 Design Response .. 158
 7.5.4.5 Design Constraints .. 158
 7.5.4.6 Shape Optimization of a single finger of MRG 159
 7.5.4 Finite Element Model ... 160
 7.5.5 Details of Shape optimization of a single finger of MRG 161
 7.5.6 Details of Shape optimization of a complete MRG assembly 164
 7.5.7 Results of Optimization ... 167

Chapter 8 Experimentation Details, Synthesis of Data, Programmes, Results & Discussions

8.1 Introduction .. 168
 8.1.1 Details of the circuitry and connections .. 169
 8.1.2 Details of Procedure for complete operation cycle 170
 8.1.3 Details of Image Processing .. 173
 8.2 Summary of the experimentation data ... 174
 8.3 Online Graphical output data of the Force Sensors .. 180
 8.4 Online Graphical output data of the Accelerometer .. 183
 8.5 Online Graphical output data of the Vision Sensor .. 186
 8.6 Summary of total Experimentation .. 188

Chapter 9 Conclusions

 9.1 Introduction .. 191
 9.2 Summary .. 191
 9.3 Conclusions .. 193
 9.4 Suggestions for Future Work ... 195

References ... 196

List of Publications .. 206

Appendix

Photographs of Experimentations .. 1 – IV
 A Dimensional Details of major components of MRG A 1 – VI
 B Basics of Simulations, MATLAB & Solid Works .. B 1 – IX
 C Sim-Mechanic Model .. C 1
 D Various Circuit Diagram for MRG ... D 1 – IV
 E Details of the Terms discussed .. E 1 – IV
 F MOTOMAN Programme for the total application ... F 1 – V
 G BS 2 Controller programme for MRG ... G 1 – VII
 H Image Processing Programme for MRG ... H 1 – VI

VIII