List of Symbols

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Symbol</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>f_m</td>
<td>Maximum Frequency</td>
<td>57</td>
</tr>
<tr>
<td>2.</td>
<td>f_n</td>
<td>Minimum Frequency</td>
<td>57</td>
</tr>
<tr>
<td>3.</td>
<td>K_3^r</td>
<td>Relative Dielectric constant</td>
<td>57</td>
</tr>
<tr>
<td>4.</td>
<td>d_{33}</td>
<td>Charge Constant</td>
<td>58</td>
</tr>
<tr>
<td>5.</td>
<td>g_{33}</td>
<td>Voltage Constant</td>
<td>58</td>
</tr>
<tr>
<td>6.</td>
<td>k_{33}</td>
<td>Coupling Constant</td>
<td>58</td>
</tr>
<tr>
<td>7.</td>
<td>S_{E33}^r</td>
<td>Elastic Constant</td>
<td>58</td>
</tr>
<tr>
<td>8.</td>
<td>Q_m</td>
<td>Mechanical Q – calculated from frequencies of minimum and maximum impedance</td>
<td>58</td>
</tr>
<tr>
<td>9.</td>
<td>τ</td>
<td>RC Time</td>
<td>68</td>
</tr>
<tr>
<td>10.</td>
<td>R^2</td>
<td>Coefficient of determination</td>
<td>72</td>
</tr>
<tr>
<td>11.</td>
<td>T</td>
<td>Torque</td>
<td>100</td>
</tr>
<tr>
<td>12.</td>
<td>$\tau_{\text{permissible}}$</td>
<td>Permissible tortional shear stress</td>
<td>100</td>
</tr>
<tr>
<td>13.</td>
<td>τ_{shaft}</td>
<td>Tortional Shear stress for shaft</td>
<td>100</td>
</tr>
<tr>
<td>14.</td>
<td>S_{yt}</td>
<td>Yield Strength</td>
<td>100</td>
</tr>
<tr>
<td>15.</td>
<td>σ_t</td>
<td>Tensile Stress</td>
<td>101</td>
</tr>
<tr>
<td>16.</td>
<td>μ</td>
<td>Coefficient of Friction</td>
<td>101</td>
</tr>
<tr>
<td>17.</td>
<td>d_0</td>
<td>Nominal diameter</td>
<td>102</td>
</tr>
<tr>
<td>18.</td>
<td>d_c</td>
<td>Core diameter</td>
<td>102</td>
</tr>
<tr>
<td>19.</td>
<td>d</td>
<td>Mean diameter</td>
<td>102</td>
</tr>
<tr>
<td>20.</td>
<td>l</td>
<td>Total thread length</td>
<td>102</td>
</tr>
<tr>
<td>21.</td>
<td>t</td>
<td>Thickness of thread</td>
<td>102</td>
</tr>
<tr>
<td>22.</td>
<td>a</td>
<td>No. of threads on screw</td>
<td>102</td>
</tr>
<tr>
<td>23.</td>
<td>p</td>
<td>Pitch of thread</td>
<td>102</td>
</tr>
<tr>
<td>24.</td>
<td>n</td>
<td>No. of starts on threads</td>
<td>102</td>
</tr>
<tr>
<td>25.</td>
<td>L</td>
<td>Length of nut</td>
<td>102</td>
</tr>
</tbody>
</table>

XVII
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Height of nut</td>
<td>102</td>
</tr>
<tr>
<td>Φ</td>
<td>Angle of friction</td>
<td>102</td>
</tr>
<tr>
<td>α</td>
<td>Helix angle</td>
<td>102</td>
</tr>
<tr>
<td>w</td>
<td>Load to be raised</td>
<td>102</td>
</tr>
<tr>
<td>F</td>
<td>Force required to raise the load</td>
<td>102</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency of Screw</td>
<td>102</td>
</tr>
<tr>
<td>P_b</td>
<td>Bearing Pressure</td>
<td>103</td>
</tr>
<tr>
<td>dp & lp</td>
<td>Diameter of pin and length of pin</td>
<td>103</td>
</tr>
<tr>
<td>R_f & R_t</td>
<td>Reactions of the finger and thumb</td>
<td>109</td>
</tr>
<tr>
<td>F_p3_o</td>
<td>Force F_p3 on the object</td>
<td>109</td>
</tr>
<tr>
<td>F_p3_L3</td>
<td>Force at pin 3 i.e. F_p3 on the link 3</td>
<td>111</td>
</tr>
<tr>
<td>F_L3_P1</td>
<td>Force along link L3 i.e. F_L3 on the pin 1</td>
<td>111</td>
</tr>
<tr>
<td>F_L1_N</td>
<td>Force exerted by the nut on the link 1</td>
<td>113</td>
</tr>
<tr>
<td>K</td>
<td>Kinetic Energy</td>
<td>118</td>
</tr>
<tr>
<td>P</td>
<td>Potential Energy</td>
<td>119</td>
</tr>
<tr>
<td>L</td>
<td>Lagrangian Function of the system</td>
<td>119</td>
</tr>
<tr>
<td>l_1</td>
<td>Length of link 1</td>
<td>139</td>
</tr>
<tr>
<td>a_n-1</td>
<td>Link length</td>
<td>139</td>
</tr>
<tr>
<td>a_n-1</td>
<td>Joint offset angle</td>
<td>139</td>
</tr>
<tr>
<td>θ_n</td>
<td>Joint angle / rotation angle</td>
<td>139</td>
</tr>
<tr>
<td>d_n</td>
<td>Link offset distance</td>
<td>139</td>
</tr>
<tr>
<td>R_z(θ_n)</td>
<td>Rotation matrix for angle θ between Z axis</td>
<td>139</td>
</tr>
<tr>
<td>T_z(d_n)</td>
<td>Rotation matrix for angle θ between Z axis</td>
<td>139</td>
</tr>
<tr>
<td>T_z(a_...)</td>
<td>Rotation matrix for angle θ between Z axis</td>
<td>139</td>
</tr>
<tr>
<td>R_z(a_...)</td>
<td>Rotation matrix for angle θ between Z axis</td>
<td>139</td>
</tr>
<tr>
<td>P_x, P_y, & P_z</td>
<td>Position of point P along X, Y & Z axis respectively</td>
<td>139</td>
</tr>
<tr>
<td>[^θ_T]</td>
<td>Transformation Matrix</td>
<td>141</td>
</tr>
<tr>
<td>f (x)</td>
<td>Objective function</td>
<td>159</td>
</tr>
<tr>
<td>g (x)</td>
<td>Constrained function</td>
<td>159</td>
</tr>
</tbody>
</table>

XVIII