ABSTRACT

ABBREVIATIONS

CHAPTER I: POLYMER COMPOSITES FROM RENEWABLE RESOURCES

1.1. Introduction 1
1.2. Renewable resources 2
1.3. Importance of renewable resources 2
1.4. Polymers from renewable resources 2
1.5. Degradation of polymeric materials 3
 1.5.1. Photodegradation 5
 1.5.2. Thermal Degradation 5
 1.5.3. Biodegradation 5
 1.5.3.1. Degradable Plastic 5
 1.5.3.2. Biodegradable Plastic 6
1.6. Miscellaneous 6
1.7. Evaluation methods for degradability. 6
1.8. Polymer composites from renewable resources. 10
 1.8.1. Biofiber composite 10
 1.8.1.2. Degradability of biofibres 11
 1.8.1.3. Composites from cellulose 11
 1.8.2. Starch composites 14
 1.8.2.1. Composites of starch with synthetic polymers 15
 1.8.2.2. Composites of starch with natural polymers 18
 1.8.2.3. Composites of starch after chemical modification 18
 1.8.2.4. Nanocomposites of starch 19
 1.8.2.5. Commercial biodegradable products of starch 21
 1.8.3. Composites of PLA 22
 1.8.3.1. Composites with natural polymers 23
 1.8.3.2. Nanocomposites of PLA 24
 1.8.3.3. Commercial degradable products from PLA 25
 1.8.4. Composites from Polyhydroxy alkanoates) 25
 1.8.5. Composites from natural oils 27
 1.8.6. Composites from Pectin 27
CHAPTER IV:
DEGRADABILITY OF BIOCOMPOSITES PREPARED FROM
CELLULOSE AND PE, PP, EP COPOLYMERS

4.1 Introduction 66
4.2. Experimental Part 67
4.2.1. Material 67
4.2.2. Preparation of composites 67
4.2.3. Characterization and performance evaluation 68
4.3. Results and discussion 68
4.3.1. Compatibility of fiber and polymer matrix 68
4.3.2. Photodegradation 71
4.3.3. Biodegradation 74
4.3.3.1. Composting 74
4.3.3.2. Culture testing 79
4.3.4. Morphological aspects 81
4.4. Conclusions 85
4.5. References 86

CHAPTER V:
DEGRADABILITY OF POLYMER COMPOSITES PREPARED
FROM LAYERED SILICATE

5.1. Introduction 88
5.2. Experimental 89
5.2.1. Materials 89
5.2.2. Preparation of nanocomposites and characterization 90
5.2.3. Durability evaluation 90
5.3. Results and discussion 91
5.3.1. Structure of composites 91
5.3.2. Photodegradability of composites 93
5.3.2.1. Photodegradation products 93
5.3.2.2. Effect of DE and LM content on photodegradation 96
5.3.2.2.1. Effect of modifier on photodegradation 102
5.3.3. Biodegradability of composites 103
CHAPTER VI:
DEGRADABILITY OF BIOCOMPOSITES PREPARED FROM STARCH AND LAYERED SILICATES

6.1 Introduction 110
6.2 Experimental 112
6.2.1 Materials 112
6.2.2 Preparation of nanocomposites 112
6.2.3 Characterization and measurements 112
6.2.3.1 WAXD 112
6.2.3.2 Thermogravimetric Analysis 112
6.2.3.3 Mechanical Properties 113
6.2.3.4 Water Uptake (WU) 113
6.2.3.5 FT-IR and Biodegradability in compost 113
6.3 Results and discussion 113
6.3.1 Structure of nanocomposites 114
6.3.2 Effect of filler dispersion on the material properties 116
6.3.2.1 Mechanical properties 116
6.3.2.2 Moisture resistance 120
6.3.2.3 Thermal properties 121
6.4 Degradability of composites 124
6.5 Conclusions 126
6.6 References 127

CHAPTER VII:
DEGRADABILITY OF BIOCOMPOSITES PREPARED FROM MODIFIED STARCH AND LAYERED SILICATES

7.1 Introduction 129
7.2 Experimental 130
7.2.1 Material 130
7.2.2 Preparation of starch derivatives 130
7.2.2.1 Preparation of starch acetate 131
7.2.2.2. Preparation of butyryl derivative
7.2.3. Preparation of Composites
7.2.4. Contact angle
7.2.5. Transmission Electronic Microscopy (TEM)
7.2.6. FT-IR, Water Uptake (WU) and degradability
7.3. Results and Discussion
7.3.1. Characterization
7.3.2. Thermal properties
7.3.3. Water uptake
7.3.4. Contact angle
7.3.5. The nanocomposites of butyryl modified starches
7.3.6. Biodegradability
7.4. Conclusions
7.5. References

CHAPTER VIII:

SUMMARY AND CONCLUSION

8.1. Objective
8.2. Achievements
8.2. Suggestions for future work