ABSTRACT

A Cloud Computing is a Promising Paradigm for life of software and there survive. A lot of industries, companies, industries, and universities decide to take benefits of their own private cloud environment such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) which is heart of Cloud Computing. A Scheduler is required to schedule number of virtual machines as per virtual machines request from consumer. Scheduler schedules number of virtual machines requests such as conserve maximum energy, achieves greater degree of load balancing and less resource utilization. With the increasing prevalence of large scale Cloud computing environments how to place requested service into the energy consumption has become essentials research problem, but existing classical scheduling methods not effective for energy efficient resource mapping.

In this thesis, we proposed scheduling schemes call Energy Efficient Scheduling Scheme i.e. EESS & Energy Efficient Scheduling and Allocation Scheme i.e. EESAS for virtual machines in private cloud environments. EESS schedules, map virtual machine request to less number of virtual machines so amount of energy conserve and EESAS schedules virtual machines request to virtual machines such as less number of Hosts / Physical machines required so amount of energy conserved.