LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>TE module for (a) refrigeration and (b) power generation.</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Dependence of S, PF and σ on the concentration of carriers.</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Schematic diagram of Frank-Van der Merwe mode of growth.</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Hexagonal unit cell of Sb$_2$Te$_3$ (Yavorsky et al. 2011).</td>
<td>17</td>
</tr>
<tr>
<td>2.1</td>
<td>Cleaned quartz ampoule for the synthesis of compound charge.</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Muffle furnace with rotation mechanism.</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>Horizontal dual zone furnace employed for vapor growth.</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>Photograph of inverted metallurgical microscope.</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic diagram of SEM.</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic diagram of TEM.</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic diagram of AFM.</td>
<td>34</td>
</tr>
<tr>
<td>2.8</td>
<td>Block diagram of an EDAX system.</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic diagram of X-ray diffraction.</td>
<td>37</td>
</tr>
<tr>
<td>2.10</td>
<td>Vickers pyramidal indenter.</td>
<td>39</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic diagram of four-point probe method.</td>
<td>40</td>
</tr>
<tr>
<td>2.12</td>
<td>Randomly shaped sample with all contacts at the border.</td>
<td>41</td>
</tr>
<tr>
<td>2.13</td>
<td>Schematic diagram of Hall effect measurement.</td>
<td>42</td>
</tr>
<tr>
<td>2.14</td>
<td>Schematic diagram of Seebeck effect.</td>
<td>45</td>
</tr>
</tbody>
</table>
3.1 Ampoule containing nonstoichiometric charge.
3.2 EDAX profile revealing oxygen content.
3.3 Stoichiometric ingot of Sb$_2$Te$_3$.
3.4 EDAX profile of the stoichiometric charge.
3.5 Sb$_2$Te$_3$ platelets grown at $\Delta T = 90 \, ^\circ\text{C}$.
3.6 Sb$_2$Te$_3$ platelets grown at (a) $\Delta T = 100 \, ^\circ\text{C}$ and (b) $\Delta T = 110 \, ^\circ\text{C}$.
3.7 Sb$_2$Te$_3$ platelets grown at $\Delta T = 120 \, ^\circ\text{C}$.
3.8 (a) Small & irregular platelets grown at $\Delta T = 130 \, ^\circ\text{C}$ and (b) kinked crystals at $\Delta T = 140 \, ^\circ\text{C}$.
3.9 SEM image depicting parallel growth steps on the surface.
3.10 AFM image showing growth layers.
3.11 3D AFM image depicting growth hillocks.
3.12 AFM image of etch pits.
3.13 EDAX profile of Sb$_2$Te$_3$ crystal.
3.14 Powder X-ray diffraction pattern of Sb$_2$Te$_3$.
3.15 Well defined Sb$_2$Te$_{3-x}$S$_x$ platelets grown at (a) $\Delta T = 120 \, ^\circ\text{C}$ and (b) $\Delta T = 130 \, ^\circ\text{C}$.
3.16 Platelets grown at $\Delta T = 140 \, ^\circ\text{C}$ with distorted shape.
3.17a SEM micrograph for composition $x = 0$.
3.17b SEM micrograph of crystals for composition $x = 0.4$, showing small clusters.
3.18a X-ray diffraction pattern of Sb$_2$Te$_{2.9}$S$_{0.1}$ crystals.
3.18b X-ray diffraction pattern of Sb$_2$Te$_{2.8}$S$_{0.2}$ crystals.
3.18c X-ray diffraction pattern of Sb$_2$Te$_{2.7}$S$_{0.3}$ crystals.
3.19 EDAX profile of Sb$_2$Te$_{2.7}$S$_{0.3}$ crystal.
3.20 Seebeck coefficient of Sb$_2$Te$_{3-x}$S$_x$ platelet crystals ($x = 0, 0.1, 0.2, 0.3 \& 0.4$).
3.21 Dependence of S and $S^2\sigma$ on sulfur composition. 72
3.22 Temperature dependence of resistivity for the Sb$_2$Te$_{3-x}$S$_x$ platelets. 74
3.23 Temperature dependence of Seebeck coefficient for the Sb$_2$Te$_{3-x}$S$_x$ platelets. 75
3.24 Variations of microhardness with load in Sb$_2$Te$_{3-x}$S$_x$ crystals. 78
3.25 AFM image of etch pits on the surface of Sb$_2$Te$_{2.7}$S$_{0.3}$ crystal. 79
3.26 Dislocation rosettes on the Sb$_2$Te$_3$ crystal after indentation. 79
3.27a Meyer plot in the load range (5-25) $\times 10^3$ kg. 81
3.27b Meyer plot in the load range (35-100) $\times 10^3$ kg. 82
4.1 Platelet crystals grown by the PVD method. 88
4.2a X-ray diffraction pattern of Sb$_{1.9}$In$_{0.1}$Te$_3$ crystals. 89
4.2b X-ray diffraction pattern of Sb$_{1.8}$In$_{0.2}$Te$_3$ crystals. 90
4.2c X-ray diffraction pattern of Sb$_{1.7}$In$_{0.3}$Te$_3$ crystals. 90
4.3 2-D AFM images of indium doped platelet. 92
4.4 Crystal structure of Sb$_2$Te$_3$ unit cell (Kokh et al. 2014). 93
4.5a 3-D AFM image of the Sb$_{1.9}$In$_{0.1}$Te$_3$ platelet. 94
4.5b 3-D AFM image of the Sb$_{1.8}$In$_{0.2}$Te$_3$ platelet. 94
4.5c 3-D AFM image of the Sb$_{1.7}$In$_{0.3}$Te$_3$ platelet. 95
4.6 SEM micrograph of a Sb$_{1.6}$In$_{0.4}$Te$_3$ crystal exhibiting regions of precipitates. 96
4.7 SEM micrograph of a Sb$_{1.7}$In$_{0.3}$Te$_3$ crystal exhibiting smooth surface. 97
4.8 Schematic diagram of various defects in a crystal. 98
TEM image exhibiting native defects of pure Sb$_2$Te$_3$ crystal.

TEM image of defects in the doped Sb$_2$Te$_3$ crystal.

ρ-T dependence of Sb$_{2-x}$In$_x$Te$_3$ crystals.

Seebeck coefficient-temperature dependence of the Sb$_{2-x}$In$_x$Te$_3$ crystals.

Seebeck coefficient of the grown crystals.

Variation of power factor with composition.

Temperature dependence of thermal conductivity.

Load dependence of microhardness in Sb$_{2-x}$In$_x$Te$_3$ crystals.

Photograph of a sealed sample after irradiation.

EDAX profile of Sb$_2$Te$_3$ crystals annealed at 473 K.

SEM image of 25 kGy irradiated Sb$_2$Te$_3$ crystal.

SEM image of 30 kGy irradiated Sb$_2$Te$_3$ crystal.

SEM image of 20 kGy irradiated Sb$_2$Te$_3$ crystal.

SEM image showing the surface of an annealed (473 K) Sb$_2$Te$_3$ crystal.

SEM image showing the surface of an annealed (573 K) Sb$_2$Te$_3$ crystal.

Powder diffraction pattern of pure and annealed (473 & 573 K) crystals.

Powder diffraction pattern of irradiated (0, 25 & 30 kGy) crystals.

Variation of mobility and carrier concentration with annealing temperature.

Variation of Seebeck coefficient and conductivity with annealing temperature.
5.9 Variation of power factor with annealing temperature.
5.10 Dependence of mobility and carrier concentration on gamma ray dose.
5.11 Dependence of Seebeck coefficient and conductivity on irradiation dose.
5.12 Dependence of power factor on irradiation dose.
5.13 AFM image exhibiting distorted lattice after irradiation with 30 kGy gamma ray dose.
6.1 Transmittance spectra of Sb$_2$Te$_{3-x}$S$_x$ crystals.
6.2 Transmittance spectra of Sb$_{2-x}$In$_x$Te$_3$ crystals.
6.3 $(\alpha h\gamma)^2$ versus photon energy $(h\gamma)$ of Sb$_2$Te$_{2.7}$S$_{0.3}$ samples.
6.4 $(\alpha h\gamma)^2$ versus photon energy $(h\gamma)$ of Sb$_{1.7}$In$_{0.3}$Te$_3$ samples.
6.5 Variation of band gap with sulfur content.
6.6 Variation of band gap with indium content.
6.7 Temperature dependence of power factor for Sb$_2$Te$_3$ crystals.
6.8 Temperature dependence of power factor for Sb$_2$Te$_{3-x}$S$_x$ crystals.
6.9 Temperature dependence of power factor for Sb$_{2-x}$In$_x$Te$_3$ crystals.