Contents

1. Photoplethysmography and its application in Clinical physiological environment – An overview 1
 1.1 Introduction 3
 1.2 The Photoplethysmography waveform 4
 1.3 Optical considerations of the origins of the photoplethysmography waveform 6
 1.4 Early and recent history of photoplethysmography 8
 1.5 Photoplethysmography Instrumentation 9
 1.6 Photoplethysmography pulse wave Characterization and analysis 13
 1.6.1 Pulse wave characterization 13
 1.6.2 Pulse wave analysis 14
 1.7 Clinical applications 15
 1.8 Scope of the thesis 16
 References 17

2. Design and development of blood volume pulse sensor and heart rate meter 23
 2.1 Introduction 25
 2.2 Principle of measurement 27
 2.3 Design of the hardware setup and heart rate meter 30
2.3.1 Mechanical design 31
2.3.2 Hardware design 33
2.3.3 Denoising of PPG using wavelet transform 36

2.4 Results and discussion 37

2.5 Conclusions 41

References 42

3. **Assessment of age-related changes using the photoplethysmography signal** 45

3.1 Introduction 47

3.2 Principle of measurement 49

3.3 Materials and methods 53

3.3.1 Measurement system 53
3.3.2 Subjects 55
3.3.3 Age related indices derived from the PPG signal 56

3.4 Results and discussion 59

3.5 Conclusions 62

References 62

4. **Investigations on the effect of local cold exposure on the photoplethysmographic signals** 65

4.1 Introduction 67

4.2 Method 69

4.2.1 Equipment and sensors 69
affected by diabetic retinopathy

6.1 Introduction 107

6.2 Materials and methods 109

6.2.1 Subjects 109
6.2.2 PPG Measurement system 111
6.2.3 System validation 112
6.2.4 Pulse wave analysis
 6.2.4a Bilateral symmetry measurement 113
 6.2.4b Analysis of second derivative of photoplethysmogram 114

6.3 Results and discussion 116

6.4 Conclusions 121

References 122

7.0 Summary and future prospects 125

7.1 General conclusions 127

7.2 Looking forward 129