7. References

46. Fischer E, Hess O. Berichte der Deutschen Chemischen Gesellschaft. 1884; 17: 559-68.

56. Gonzalez B, Calver N, Gomez E, Dominguez I, Dominguez A. Experimental
determination, correlation and prediction of physical properties of the ternary
mixtures of ethanol + water with 1-octyl-3-methylimidazolium chloride and 1-
ethyl-3-methylimidazolium ethyl sulfate. Journal of Chemical and Engineering
Data. 2007; 52: 2529-35.

57. Gorin D, Davis NR, Toste F D. Gold (I)-catalyzed intramolecular acetylenic

58. Greaves TL, Drummond CJ. Protic ionic liquids: properties and applications.

59. Gribble GW. Recent developments in indole ring synthesis –methodology and
application. Journal of the Chemical Society, Perkin Transaction. 2000; 1: 1045-
75.

60. Grubbs RH, Chang S. Recent advances in olefin metathesis and its application in

61. Guo Y, Rockstraw DA. Physical and chemical properties of the carbon synthesis
from xylan, cellulose and kraft lignin by H3PO4 activation. Carbon. 2006; 44: 1464-75.

62. Gupta N, Goyal D. Synthesis of indole and its derivatives in water. Chemistry of
Heterocyclic Compounds. 2015; 51: 4-7.

63. Gupta N, Sonu, Kad GL, Singh J. Acidic ionic liquid [bmim][HSO4]: an efficient
catalyst for acetalization and thioacetalization of carbonyl compounds and their

64. Hailes HC. Reaction Solvent Selection: The Potential of Water as a Solvent for
Organic Transformations. Organic Process Research and Development. 2007; 11:
114-20.

65. Handy S, Westbrook A. Mild synthesis of bis(indolyl)methanes using a deep

66. Hapiot P, Lagrost C. Electrochemical reactivity in room temperature ionic

67. Hasaninejad A, Zare A, Shekouhy M, Red JA. Catalyst –free one –pot four
component syntheses of polysubstituted imidazoles in neutral ionic liquid 1-butyl-

116. Mishra S, Ghosh R. Ecofriendly and sustainable efficient synthesis of bis(indolyl)methanes based on recyclable bronstead (CSA) or Lewis (ZrOCl$_2$.8H$_2$O) acid catalysts. Indian Journal of Chemistry. 2011; 50: 1630-36.

154. Sakai N, Annaka K, Fujita A, Sato A, Konakahara TJ. InBr3-promoted divergent approach to polysubstituted indoles and quinoline from 2-ethynylanilines: Switch

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>181</td>
<td>Watson JG, Chow JC, Fujita EM</td>
<td>Toxic effects of hazardous chemicals on the environment</td>
<td>Atmosphere and Environment</td>
<td>2001; 35</td>
<td>1567-70</td>
</tr>
<tr>
<td>182</td>
<td>Welton T</td>
<td>Room-temperature ionic liquids: solvents for synthesis and catalysis</td>
<td>Chemical Reviews</td>
<td>1999; 99</td>
<td>2071-84</td>
</tr>
<tr>
<td>183</td>
<td>Wilkes JS</td>
<td>Properties of ionic liquid solvents for catalysis</td>
<td>Journal of Molecular Catalysis A: Chemicals</td>
<td>2004; 214</td>
<td>11-17</td>
</tr>
<tr>
<td>185</td>
<td>Wu WB, Huang JM</td>
<td>Highly regioselective C-N bond formation through C-H azolation of indoles promoted by iodine in aqueous media</td>
<td>Organic Letters</td>
<td>2012; 14</td>
<td>5832-35</td>
</tr>
<tr>
<td>186</td>
<td>Xia M, Wang SB, Yuan WB</td>
<td>Lewis acid catalysed electrophilic substitution of indoles with aldehydes and Schiff’s under microwave solvent free irradiation bases</td>
<td>Synthetic Communications</td>
<td>2004; 34</td>
<td>3175-85</td>
</tr>
</tbody>
</table>

