List of Figures

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Cement Procured from Source</td>
<td>39</td>
</tr>
<tr>
<td>2.2. Types of Fine Aggregates</td>
<td>40</td>
</tr>
<tr>
<td>2.3. Micro silica</td>
<td>43</td>
</tr>
<tr>
<td>2.4. Colloidal nano silica</td>
<td>45</td>
</tr>
<tr>
<td>2.5. Nano silica</td>
<td>46</td>
</tr>
<tr>
<td>2.6. Rotary Mixer</td>
<td>51</td>
</tr>
<tr>
<td>2.7. Casting of Cubes</td>
<td>52</td>
</tr>
<tr>
<td>2.8. Vicat's Apparatus</td>
<td>54</td>
</tr>
<tr>
<td>2.9. Initial Setting time test</td>
<td>55</td>
</tr>
<tr>
<td>2.10. Flow table with mortar</td>
<td>56</td>
</tr>
<tr>
<td>2.11. Compression testing machine</td>
<td>57</td>
</tr>
<tr>
<td>2.12. Split Tensile Strength</td>
<td>58</td>
</tr>
<tr>
<td>2.13. The Vacuum Pump, Desiccator with Specimens and A Container with De-Aerated Water</td>
<td>60</td>
</tr>
<tr>
<td>2.14. Rapid Chloride Permeability Test Setup</td>
<td>61</td>
</tr>
<tr>
<td>2.15. Scanning electron microscope</td>
<td>64</td>
</tr>
<tr>
<td>2.16. Samples for SEM-EDX analysis</td>
<td>66</td>
</tr>
<tr>
<td>2.17. X-ray diffractometer</td>
<td>68</td>
</tr>
<tr>
<td>2.18. Representation of Powder diffraction</td>
<td>69</td>
</tr>
<tr>
<td>2.19. Samples for XRD analysis</td>
<td>70</td>
</tr>
</tbody>
</table>
3.1. Consistency Plots in presence of MS 74
3.2. Consistency Plots in presence of NS 75
3.3. Consistency Plots for Specimens 77
3.4. Consistency Plots in presence of MS+1%NS 77
3.5. Setting time Plots in presence of MS 79
3.6. Setting time Plots in presence of NS 80
3.7. Setting time plots of specimens 81
3.8. Setting time Plots in presence of MS+1%NS 82
3.9. Flow Plots in presence of MS 83
3.10. Flow Plots in presence of NS 84
3.11. Flow Plots of specimens 84
3.12. Flow Plots in presence of MS+1%NS 85
3.13. Compressive Strength v/s curing age for specimens with MS 86
3.14. Compressive strength v/s %age of MS 87
3.15. Compressive Strength v/s curing age for specimens with NS 89
3.16. Compressive strength v/s %age of NS 90
3.17. Compressive strength plots 91
3.18. Compressive strength v/s curing age of MS for specimens with MS+1%NS 92
3.19. Compressive strength v/s %age of MS at 1% NS 93
3.20. Split tensile strength v/s curing age for specimens with MS 94
3.21. Split tensile strength v/s %age of MS for specimens with MS 95
3.22. Split tensile strength v/s curing age for specimens with NS 96
3.23. Split tensile strength v/s %age of NS for specimens with NS

3.24. Split tensile strength v/s curing age for specimens with MS+1%NS

3.25. Split tensile strength v/s curing age of Specimens

3.26. Split tensile strength v/s %age of MS for specimens with MS+1%NS

3.27. RCPT v/s curing age of MS for specimens with MS

3.28. RCPT v/s %age of MS for specimens with MS

3.29. RCPT v/s curing age of NS for specimens with NS

3.30. RCPT v/s %age of NS for specimens with NS

3.31. RCPT v/s curing age of MS for specimens with MS+1%NS

3.32. RCPT v/s %age of MS for specimens with MS+1%NS

3.33. RCPT values of the specimens

3.34. Carbonation Depth v/s carbonation age for specimens with MS

3.35. Carbonation Depth v/s % age of MS

3.36. Carbonation Depth v/s carbonation age for specimens with NS

3.37. Carbonation Depth v/s % age for specimens with NS

3.38. Carbonation Depth v/s carbonation age for specimens with MS+1%NS

3.39. Carbonation depth of the specimens

3.40. Carbonation Depth v/s %age of MS for specimens with MS+1%NS

3.41. Compressive strength v/s curing age for specimens with MS in MgSO₄ solution
3.42. Compressive strength v/s %age of MS for specimens with MS in MgSO₄ solution
3.43. Compressive Strength v/s curing age for specimens with NS in MgSO₄ solution
3.44. Compressive strength v/s %age of NS for specimens with NS in MgSO₄ solution
3.45. Compressive strength v/s curing age for specimens with MS+1% NS in MgSO₄ solution
3.46. Compressive strength of mortar Specimens in MgSO₄ solution
3.47. Compressive strength v/s %age of MS for specimens with MS+1% NS in MgSO₄ solution
3.48. Compressive Strength v/s curing age for specimens with MS in presence of NaCl solution
3.49. Compressive strength v/s %age of MS for specimens with MS in presence of NaCl solution
3.50. Compressive Strength v/s curing age for specimens with NS in presence of NaCl solution
3.51. Compressive strength v/s %age of NS in presence of NaCl solution
3.52. Compressive strength of Specimens in presence of NaCl solution
3.53. Compressive strength v/s curing age of MS for specimens with MS+1% NS in presence of NaCl solution
3.54. Compressive strength v/s %age of MS for specimens with MS+1% NS in presence of NaCl solution
3.55. Isoresponse curves for Compressive Strength at 3, 7 and 28 days
3.56. Isoresponse curves for Compressive Strength at 56, 90 and 180 days
3.57. Iso response curves for split tensile strength at 3, 7 and 28 days

xxi
3.58. Iso response curves for split tensile strength at 56, 90 and 180 days
3.59. Correlation of Split tensile strength and compressive strength at 3 days
3.60. Correlation of Split tensile strength and compressive strength at 7 days
3.61. Correlation of Split tensile strength and compressive strength at 28 days
3.62. Correlation of Split tensile strength and compressive strength at 56 days
3.63. Correlation of Split tensile strength and compressive strength at 90 days
3.64. Correlation of Split tensile strength and compressive strength at 180 days
3.65. Correlation of RCPT and compressive strength at 28 days
3.66. Correlation of RCPT and compressive strength at 56 days
3.67. Correlation of RCPT and compressive strength at 90 days
3.68. Correlation of RCPT and compressive strength at 180 days
3.69. Correlation of RCPT and Split tensile strength at 28 days
3.70. Correlation of RCPT and Split tensile strength at 56 days
3.71. Correlation of RCPT and Split tensile strength at 90 days
3.72. Correlation of RCPT and Split tensile strength at 180 days
3.73. Correlation of Compressive strength in water verses Compressive strength in MgSO₄ solution at 56 days
3.74. Correlation of Compressive strength in water verses Compressive strength in MgSO₄ solution at 90 days
3.75. Correlation of Compressive strength in water verses Compressive strength in MgSO₄ solution at 180 days

xxii
3.76. Correlation of Compressive strength in water verses Compressive strength in NaCl solution at 56 days 140
3.77. Correlation of Compressive strength in water verses Compressive strength in NaCl solution at 90 days 140
3.78. Correlation of Compressive strength in water verses Compressive strength in NaCl solution at 180 days 140
3.79. Diffractograms of CMS at 3, 7 and 28 days 143
3.80. Diffractograms of MM1 at 3, 7 and 28 days 144
3.81. Diffractograms of MM2 at 3, 7 and 28 days 145
3.82. Diffractograms of MM3 at 3, 7 and 28 days 146
3.83. Diffractograms of MM4 at 3, 7 and 28 days 147
3.84. Diffractograms of MN1 at 3, 7 and 28 days 149
3.85. Diffractograms of MN2 at 3, 7 and 28 days 150
3.86. Diffractograms of MN3 at 3, 7 and 28 days 151
3.87. Diffractograms of MN4 at 3, 7 and 28 days 152
3.88. Diffractograms of MNM1 at 3, 7 and 28 days 154
3.89. Diffractograms of MNM2 at 3, 7 and 28 days 155
3.90. Diffractograms of MNM3 at 3, 7 and 28 days 156
3.91. Diffractograms of MNM4 at 3, 7 and 28 days 157
3.92. SEM-EDX Micrographs for CMS at 3, 7 and 28 days 160
3.93. SEM-EDX micrographs of MM1 at 3, 7 and 28 days 163
3.94. SEM-EDX micrographs of MM2 at 3, 7 and 28 days 164
3.95. SEM-EDX micrographs of MM3 at 3, 7 and 28 days 165
3.96. SEM-EDX micrographs of MM4 at 3, 7 and 28 days 166

xxiii
3.97. SEM-EDX micrographs of MN1 at 3, 7 and 28 days 169
3.98. SEM-EDX micrographs of MN2 at 3, 7 and 28 days 170
3.99. SEM-EDX micrographs of MN3 at 3, 7 and 28 days 171
3.100. SEM-EDX micrographs of MN4 at 3, 7 and 28 days 172
3.101. SEM-EDX micrographs of MNM1 at 3, 7 and 28 days 175
3.102. SEM-EDX micrographs of MNM2 at 3, 7 and 28 days 176
3.103. SEM-EDX micrographs of MNM3 at 3, 7 and 28 days 177
3.104. SEM-EDX micrographs of MNM4 at 3, 7 and 28 days 178