CHAPTER-IV

SUMMARY RESULTS AND DISCUSSIONS
4.1 Introduction

This Chapter portrays the summary results and discussions of the study on “Innovation Management in Information Technology Services”.

4.2 Demographic characteristics of the respondents prevailed

- A total of 3000 responses are received, the demographics identifies that a total of 2579 Males and 421 Females have take part in the study.

- In CMM Level 5 companies the number of female respondents participated in the survey are 91 while compared to male respondents of 509, average experience is 8.83 years and average age is 31.8 years.

- The number of female respondents participated in the survey are 92 when compared to male respondents of 508, average experience is 9.15 years and average age is 32.65 years in CMM level 4 company projects.

- From CMM Level 3 companies the number of female respondents participated in the survey are 88 when compared to male respondents of 512, average experience is 8.42 years and average age is 31.95 years.

- The number of female respondents participated in CMM Level 2 companies are 64 which is the least when compared with the level 1,3,4 and 5. The number of male
respondents participated are 536, average experience is 8.06 years and average age is 32.29 years.

- From CMM Level 1 companies, the number of female respondents participated in the survey are 86 when compared to male respondents of 514, average experience is 7.53 years; this is the least average experience among peer CMM Level companies and average age is 30.76 years.

- The average age of all respondents is 32.25 years, 32.26 years is the average male experience which is on par with women respondents which is 32.16 years. Minimum average age of project members in a project is 27.5 years when compared with maximum of 40 years.

- The average experience of all the respondents is 8.68 years which depicts that the Information Technology Industry encourage youth. There exists no much significant difference in the average experience between men (8.68 years) and women (8.66 years). Minimum experience in a project is 4.9 years and maximum is of 12.6 years.

4.3 Success factors of Business Users, Management Personnel and Technical Personnel

Regarding innovation management in information technology enterprise service projects the present survey supports the findings of Alam[1], 2006a; Avlonitis et al[2], 2001 which was indicated that dynamic factors of innovation is also becoming increasingly popular among information technology services. This is not surprising,
considering the important role of innovation management in information technology services. Projects often lack resources to develop and commercialize new innovative ideas in-house and as a result are more often inclined to collaborate with business user or management groups. The study tells that the intensity of dimensions of success factors is different for business users, management personnel and technical personnel. Discussed below are the various summary results of business user, management personnel.

- To extract the factors, Principal Component Analysis and Varimax with Kaiser Normalization rotation analysis has been applied using SPSS version 20.0.

- It has been observed that the business user critical success factors for success of innovation projects are Business Enhancement, Risk Improvisization, Market edge on Innovation, Vision Enrichment, and Reengineering, with factor loadings higher than 0.597, with reliability greater than 0.431. This finding supports Kavanagh[^3] & Naughton[^3], 2009, Robert G Cooper, 1991[^4], Gales[^5], 1995 studies which focused on business user factors for information technology services.

- Management personnel critical success factors for success of innovation projects are Flexibility to Change, Knowledge Sharing, Value added project, Resourcing, Individual Excellence with factor loading greater than 0.5 and reliability greater than 0.5 and Process Oriented identified with factor loading of 0.491, with reliability of 0.385. This finding supports Watts S Humphrey[^6], 1997;

4.4 Percevance of Intensity of Success Factors

- Through ANOVA analysis it is understood that percevance of intensity of success factors by business users, management personnel and technical personnel are significantly differing at 0.05 levels. So, Hypothesis H1 Intensity and Dimensions of Innovation Management are different for Design Personnel, Business User, and Management Personnel is agreed.

- It has also been observed that there is a significant difference in the critical success factors of innovation for business users, management personnel and design personnel.

- The most significant factors according to business users are Value creation and addition, Edge on the competitors,
followed by the factors of High potential for risk absorption, Learning environment from others mistakes, Creates positive impact on brand imaging, Enhances competition in targeted market, Ease of implementation in existing facilities, Creates boundary less knowledge sharing, See value in absurdity, Designing of decentralized small business solutions, Normalized experience, Relative price and cost reduction, Normalized age, Glorifies effective decision making, Explores news ideas anytime, Helps in vision Improvisization, Maintenance of dignity of workforce, Projects are well defined with flexible execution process and the least significant one is helps in magnification of sales and the findings are supported by the studies of Kavanagh[3] & Naughton[3], 2009, Robert G Cooper, 1991[4], Gales[5], 1995

- The most significant factor as perceived by management personnel is work-life balance, followed by the factors of Providing support to colleagues, Partner’s consultation for open innovation, well defined flexible execution process, Management Vision, Consultation of technical personnel, Business results impact, Strategic Change Management, Management confidence on technical resources, Normalized experience, Effective decision making, Intranet as a communication agent, Project teams say in resourcing, Peer support across boundaries, Management Involvement in users requirements, Risk valuation, Readiness for regular change, and least significant are Effective line of control and Normalized age and these findings are in support of the studies of Watts S

4.5 Modelling the success of ITS projects using Neural Networks

- Neural Network model is applied to find the success of Information Technology Service projects.

- Of the cases used to create the model, 65 Innovative IT projects are classified as successful. 4 innovative IT Projects are classified as not successful. Overall, 100% of the training cases are classified correctly, corresponding to the 0% incorrect.
Most significant factors as per business users are Edge on competitors and supports value creation and addition and the least significant factor is helping in magnification of sales which are in line with the studies of Kavanagh[3] & Naughton[3], 2009.

4.6 Significance of the Study

Over the past few years, innovation in India as a corporate theme has constantly gained importance, becoming a prerequisite for long-term success, or maybe even survival, due to the discontinuous pace of change of the environment due to Globalization and Privatization. Thus, innovation has become a corporate priority, affecting all aspects of an organisation. This shows that innovation, although mostly focused in the area of research and development, and marketing, should not be compartmentalised from the rest of the company, but rather integrated at every level, in order to be fully effective and to be in line with corporate strategy and goals.
This study is contributing to assess and measure the dimension of success for innovation projects under execution before implementation by Information Technology Service Enterprises helps the companies to pay attention to their innovation management strategies which in-turn helps in increasing the pre-sales, reducing costs, winning new business, increasing productivity, development of new business models, and bringing continuous improvement to the existing processes. Overall this strategy facilitates the companies to identify critical success factors of projects under design and in turn to increase success rate of the innovative projects.
References

