APPENDIX I - III
<table>
<thead>
<tr>
<th>Genus/Species/Strain</th>
<th>Unique Identifier</th>
<th>ORF</th>
<th>Sequencing Centre</th>
<th>Genome Size (Mb)</th>
<th>Chromosome</th>
<th>Importance</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schizosaccharomyces japonicas</td>
<td>SZJA</td>
<td>5168</td>
<td>Broad-FGI</td>
<td>14</td>
<td>UK</td>
<td>Closely related to S. pombe</td>
<td>UP</td>
</tr>
<tr>
<td>Schizosaccharomyces pombe 972h-</td>
<td>SZPO</td>
<td>5045</td>
<td>SANGER</td>
<td>14</td>
<td>3</td>
<td>Model Organism, Cell Cycle, Biology</td>
<td>(1)</td>
</tr>
<tr>
<td>Aspergillus clavatus NRRL 1</td>
<td>ASCL</td>
<td>9122</td>
<td>TIGR</td>
<td>35</td>
<td>8</td>
<td>Non-Pathogen</td>
<td>(2)</td>
</tr>
<tr>
<td>Aspergillus nidulans FGSC A4</td>
<td>ASAN</td>
<td>10701</td>
<td>Broad-FGI</td>
<td>31</td>
<td>8</td>
<td>Saprophy</td>
<td>(3)</td>
</tr>
<tr>
<td>Aspergillus oryzae RIB40</td>
<td>ASOR</td>
<td>12074</td>
<td>NITE</td>
<td>37</td>
<td>8</td>
<td>Saprophy</td>
<td>(4)</td>
</tr>
<tr>
<td>Aspergillus terreus NIH2624</td>
<td>ASTE</td>
<td>10406</td>
<td>Broad-FGI</td>
<td>35</td>
<td>8</td>
<td>Opportunistic Human Pathogen</td>
<td>UP</td>
</tr>
<tr>
<td>Aspergillus flavus NRRL3357</td>
<td>ASFL</td>
<td>12587</td>
<td>TIGR</td>
<td>36</td>
<td>8</td>
<td>Plant, Human and Animal pathogen</td>
<td>UP</td>
</tr>
<tr>
<td>Aspergillus fumigatus AF293</td>
<td>ASFU</td>
<td>9924</td>
<td>SANGER</td>
<td>30</td>
<td>8</td>
<td>Opportunistic Human Pathogen</td>
<td>UP</td>
</tr>
<tr>
<td>Aspergillus niger CBS 513.88</td>
<td>ASNI</td>
<td>8592</td>
<td>DSM</td>
<td>37</td>
<td>8</td>
<td>Industrial Use</td>
<td>UP</td>
</tr>
<tr>
<td>Neosartorya fischeri NRRL</td>
<td>NIFI</td>
<td>10403</td>
<td>TIGR</td>
<td>35</td>
<td>8</td>
<td>Non-Pathogen</td>
<td>(5)</td>
</tr>
<tr>
<td>Botrytis cinerea B05.10</td>
<td>BOCI</td>
<td>16448</td>
<td>Broad-FGI</td>
<td>38</td>
<td>UK</td>
<td>Neotrophs-Plants</td>
<td>UP</td>
</tr>
<tr>
<td>Chaetomium globosum CBS 148.51</td>
<td>CHGL</td>
<td>11124</td>
<td>Broad-FGI</td>
<td>36</td>
<td>UK</td>
<td>Opportunistic Human Pathogen</td>
<td>UP</td>
</tr>
<tr>
<td>Coccioides immittis RS</td>
<td>COIM</td>
<td>10457</td>
<td>Broad-FGI</td>
<td>28.78</td>
<td>UK</td>
<td>Human Pathogen</td>
<td>UP</td>
</tr>
<tr>
<td>Fusarium graminearum GZ3639</td>
<td>FUGR</td>
<td>13320</td>
<td>Broad-FGI</td>
<td>40</td>
<td>4</td>
<td>Hemibiotroph-Wheat, sexual</td>
<td>UP</td>
</tr>
<tr>
<td>Fusarium oxysporum f. sp. lycopersici</td>
<td>FUOX</td>
<td>17608</td>
<td>Broad-FGI</td>
<td>60</td>
<td>UK</td>
<td>Hemibiotroph-Wheat, asexual</td>
<td>UP</td>
</tr>
<tr>
<td>Fusarium verticillioides</td>
<td>FUVE</td>
<td>14195</td>
<td>Broad-FGI</td>
<td>46</td>
<td>12</td>
<td>Hemibiotroph-Wheat, Sexual</td>
<td>UP</td>
</tr>
<tr>
<td>Histoplasma capsulatum</td>
<td>HICA</td>
<td>9349</td>
<td>Broad-FGI</td>
<td>40</td>
<td>7</td>
<td>Human Pathogen</td>
<td>UP</td>
</tr>
<tr>
<td>Magnaporthe grisea 70-15</td>
<td>MAGR</td>
<td>12841</td>
<td>Broad-FGI</td>
<td>40</td>
<td>7</td>
<td>Hemibiotroph-Rice</td>
<td>UP</td>
</tr>
<tr>
<td>Mycosphaerella graminicola</td>
<td>MYGR</td>
<td>11395</td>
<td>DOE-JGI</td>
<td>39.6</td>
<td>UK</td>
<td>Hemibiotroph-wheat; Yeast-filamentation</td>
<td>UP</td>
</tr>
<tr>
<td>Nectria haematococca</td>
<td>NEHA</td>
<td>16237</td>
<td>DOE-JGI</td>
<td>40</td>
<td>UK</td>
<td>Saprophy, Plant and Animal Pathogen</td>
<td>UP</td>
</tr>
<tr>
<td>Neurospora crassa</td>
<td>NECR</td>
<td>9846</td>
<td>Broad-FGI</td>
<td>43</td>
<td>7</td>
<td>Saprophy</td>
<td>(6)</td>
</tr>
<tr>
<td>Podospora anserina</td>
<td>POPA</td>
<td>9872</td>
<td>CNRS-Génooscope</td>
<td>34</td>
<td>7</td>
<td>Saprophy</td>
<td>(7)</td>
</tr>
<tr>
<td>Sclerotinia sclerotiorum 1980</td>
<td>SCSC</td>
<td>14552</td>
<td>Broad-FGI</td>
<td>38</td>
<td>UK</td>
<td>Neotrophs</td>
<td>UP</td>
</tr>
<tr>
<td>Stagonospora nodorum SN15</td>
<td>STNO</td>
<td>16597</td>
<td>Broad-FGI</td>
<td>37.1</td>
<td>UK</td>
<td>Hemibiotroph-Wheat</td>
<td>UP</td>
</tr>
<tr>
<td>Trichoderma reesei QM6a</td>
<td>TRRE</td>
<td>9129</td>
<td>DOE-JGI</td>
<td>33</td>
<td>7</td>
<td>Saprophy, Biomass</td>
<td>(8)</td>
</tr>
<tr>
<td>Uncinocarpus reesii 1704</td>
<td>UNRE</td>
<td>7798</td>
<td>Broad-FGI</td>
<td>30</td>
<td>UK</td>
<td>Non-Pathogen, related to C. immitis</td>
<td>UP</td>
</tr>
<tr>
<td>Candida albicans SC5314</td>
<td>CAAL</td>
<td>6147</td>
<td>Stanford</td>
<td>16</td>
<td>8</td>
<td>Opportunistic Human Pathogen</td>
<td>(9)</td>
</tr>
<tr>
<td>Candida albicans W01</td>
<td>CAALW</td>
<td>5931</td>
<td>Broad-FGI</td>
<td>14</td>
<td>8</td>
<td>Opportunistic Human Pathogen, Colony Morphology</td>
<td>UP</td>
</tr>
<tr>
<td>Candida dubliniensis</td>
<td>CADU</td>
<td>6686</td>
<td>SANGER</td>
<td>14.6</td>
<td>8</td>
<td>Closely related to C. albicans</td>
<td>UP</td>
</tr>
<tr>
<td>Candida glabrata CBS138</td>
<td>CAGL</td>
<td>5192</td>
<td>Génoleures</td>
<td>12.28</td>
<td>13</td>
<td>Opportunistic Human Pathogen</td>
<td>(10)</td>
</tr>
<tr>
<td>Candida guilliermondii ATCC 6260</td>
<td>CAGU</td>
<td>5920</td>
<td>Broad-FGI</td>
<td>12</td>
<td>UK</td>
<td>Candida Clade, non-pathogen, haploid, sexual</td>
<td>UP</td>
</tr>
<tr>
<td>Candida lusitaniae ATCC 42720</td>
<td>CALU</td>
<td>5941</td>
<td>Broad-FGI</td>
<td>16</td>
<td>UK</td>
<td>Candida Clade, non-pathogen, haploid, sexual</td>
<td>UP</td>
</tr>
<tr>
<td>Candida tropicalis MYA3404</td>
<td>CATR</td>
<td>6258</td>
<td>Broad-FGI</td>
<td>15</td>
<td>6</td>
<td>Candida Clade, pathogen, diploid, asexual</td>
<td>UP</td>
</tr>
<tr>
<td>Candida parapsilosis</td>
<td>CAPA</td>
<td>6200</td>
<td>SANGER</td>
<td>26</td>
<td>14</td>
<td>Candida clade, pathogen, diploid</td>
<td>UP</td>
</tr>
</tbody>
</table>
Appendix I

<table>
<thead>
<tr>
<th>Genus/Species/Strain</th>
<th>Unique Identifier</th>
<th>ORF</th>
<th>Sequencing Centre</th>
<th>Genome Size (Mb)</th>
<th>Chromosome</th>
<th>Importance</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debaryomyces hansenii CBS767</td>
<td>DEHA</td>
<td>6318</td>
<td>Génolevures</td>
<td>12.22</td>
<td>7</td>
<td>Candida clade, non-pathogen, halotolerant</td>
<td>(11)</td>
</tr>
<tr>
<td>Lodderomyces elongisporus NRRL YB-4239</td>
<td>LOEL</td>
<td>5796</td>
<td>Broad-FGI</td>
<td>16</td>
<td>UK</td>
<td>Candida clade</td>
<td>UP</td>
</tr>
<tr>
<td>Pichia stipitis</td>
<td>PIST</td>
<td>5816</td>
<td>DOE-JGI</td>
<td>15.4</td>
<td>8</td>
<td>Candida clade, non-pathogen, Xyloside fermentation</td>
<td>(12)</td>
</tr>
<tr>
<td>Eremothecium cossutii ATCC 10895</td>
<td>ERGO</td>
<td>4726</td>
<td>AGD</td>
<td>8.74</td>
<td>7</td>
<td>Industrial Use: Vitamin B2 overproducer</td>
<td>(13)</td>
</tr>
<tr>
<td>Kluyveromyces lactis NRRL Y-1140</td>
<td>KLLA</td>
<td>5336</td>
<td>Génolevures</td>
<td>10.69</td>
<td>6</td>
<td>Industrial Use</td>
<td>(11)</td>
</tr>
<tr>
<td>Kluyveromyces waltii NCYC 2644</td>
<td>KLWA</td>
<td>5230</td>
<td>Broad-FGI</td>
<td>10.91</td>
<td>8</td>
<td>Related to K. lactis</td>
<td>(14)</td>
</tr>
<tr>
<td>Saccharomyces bayanus 623-6C</td>
<td>SABA</td>
<td>4966</td>
<td>WashU</td>
<td>11.54</td>
<td>16</td>
<td>Saccharomyces Clade</td>
<td>(15)</td>
</tr>
<tr>
<td>Saccharomyces castellii NRRL Y-12630</td>
<td>SACA</td>
<td>4677</td>
<td>WashU</td>
<td>12</td>
<td>9</td>
<td>Saccharomyces Clade: Senso lato</td>
<td>(16)</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae S288c</td>
<td>SACE</td>
<td>5916</td>
<td>WashU</td>
<td>12.6</td>
<td>8</td>
<td>Saccharomyces Clade: Senso lato</td>
<td>(16)</td>
</tr>
<tr>
<td>Saccharomyces kluyveri NRRL Y-12651</td>
<td>SAKL</td>
<td>2968</td>
<td>WashU</td>
<td>12.6</td>
<td>8</td>
<td>Saccharomyces Clade: Senso stricto</td>
<td>(16)</td>
</tr>
<tr>
<td>Saccharomyces kudriavitzii IFO 1802</td>
<td>SAKU</td>
<td>3768</td>
<td>WashU</td>
<td>12.6</td>
<td>8</td>
<td>Saccharomyces Clade: Senso stricto</td>
<td>(16)</td>
</tr>
<tr>
<td>Saccharomyces mikatae IFO 1815</td>
<td>SAMI</td>
<td>9016</td>
<td>WashU</td>
<td>12.12</td>
<td>16</td>
<td>Saccharomyces Clade: Senso stricto</td>
<td>(16)</td>
</tr>
<tr>
<td>Saccharomyces paradoxus</td>
<td>SAPA</td>
<td>7980</td>
<td>WashU</td>
<td>11.75</td>
<td>16</td>
<td>Saccharomyces Clade: Senso stricto</td>
<td>(16)</td>
</tr>
<tr>
<td>Yarrowia lipolytica CLIB122</td>
<td>YALI</td>
<td>6543</td>
<td>Génolevures</td>
<td>20.5</td>
<td>6</td>
<td>Industrial Use</td>
<td>(11)</td>
</tr>
<tr>
<td>Coprinus cinereus Okayama 7#130</td>
<td>COCI</td>
<td>13544</td>
<td>Broad-FGI</td>
<td>37.5</td>
<td>13</td>
<td>Saprophyte, Multicellular</td>
<td>UP</td>
</tr>
<tr>
<td>Cryptococcus neoformans A (H99 Serotype A)</td>
<td>CRNEA</td>
<td>7302</td>
<td>Broad-FGI</td>
<td>19.46</td>
<td>14</td>
<td>Opportunistic Human Pathogen</td>
<td>UP</td>
</tr>
<tr>
<td>Cryptococcus neoformans var.neoformans B-3501A (Sero D)</td>
<td>CRNEB</td>
<td>6578</td>
<td>Stanford</td>
<td>18.52</td>
<td>UK</td>
<td>Opportunistic Human Pathogen</td>
<td>UP</td>
</tr>
<tr>
<td>Cryptococcus neoformans var. neoformans JEC21 (Sero D)</td>
<td>CRNEJ</td>
<td>6475</td>
<td>TIGR</td>
<td>19.05</td>
<td>14</td>
<td>Opportunistic Human Pathogen</td>
<td>(18)</td>
</tr>
<tr>
<td>Cryptococcus neoformans gatti R265</td>
<td>CRNER</td>
<td>6104</td>
<td>Broad-FGI</td>
<td>20</td>
<td>14</td>
<td>Opportunistic Human Pathogen</td>
<td>UP</td>
</tr>
<tr>
<td>Laccaria bicolor S238N-H82</td>
<td>LABI</td>
<td>20614</td>
<td>DOE-JGI</td>
<td>65</td>
<td>UK</td>
<td>Ectomycorrhizal</td>
<td>(19)</td>
</tr>
<tr>
<td>Phanerochaete chrysosporium RP-78</td>
<td>PHCH</td>
<td>10048</td>
<td>DOE-JGI</td>
<td>30</td>
<td>10</td>
<td>Saprophyte, Bioremediation</td>
<td>(20)</td>
</tr>
<tr>
<td>Postia placenta</td>
<td>POPL</td>
<td>17173</td>
<td>DOE-JGI</td>
<td>33</td>
<td>UK</td>
<td>Saprophyte, Cellulose degradation</td>
<td>UP</td>
</tr>
<tr>
<td>Sporabolomyces roseus IAM 13481</td>
<td>SPRO</td>
<td>5537</td>
<td>DOE-JGI</td>
<td>10</td>
<td>UK</td>
<td>Free living, non-pathogen</td>
<td>UP</td>
</tr>
<tr>
<td>Ustilago maydis 521</td>
<td>USMA</td>
<td>6522</td>
<td>DOE-JGI</td>
<td>20.5</td>
<td>23</td>
<td>Biotroph-Maize</td>
<td>(21)</td>
</tr>
<tr>
<td>Batrachochromia dendrobatidis IELA23</td>
<td>BADE</td>
<td>8818</td>
<td>DOE-JGI</td>
<td>23.7</td>
<td>20</td>
<td>Amphibian Pathogen</td>
<td>UP</td>
</tr>
<tr>
<td>Phlycomyces blakesleeanus</td>
<td>PHBL</td>
<td>14792</td>
<td>DOE-JGI</td>
<td>40</td>
<td>UK</td>
<td>Model system to study light response</td>
<td>UP</td>
</tr>
<tr>
<td>Rhizopus oryzae RA 99-880</td>
<td>RHOR</td>
<td>17467</td>
<td>DOE-JGI</td>
<td>40</td>
<td>UK</td>
<td>Bread Mold, Oppor. Human Pathogen</td>
<td>UP</td>
</tr>
<tr>
<td>Encephalitozoon cuniculi GB-M1</td>
<td>ENCU</td>
<td>1996</td>
<td>Génoscope</td>
<td>2.9</td>
<td>11</td>
<td>Opportunistic Human Pathogen</td>
<td>(22)</td>
</tr>
</tbody>
</table>
Appendix I

<table>
<thead>
<tr>
<th>Code</th>
<th>Decode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascomycetes:Archaescomycetes</td>
<td></td>
</tr>
<tr>
<td>Ascomycetes:Euascomycetes</td>
<td></td>
</tr>
<tr>
<td>Ascomycetes:Hemiascomycetes</td>
<td></td>
</tr>
<tr>
<td>Basidiomycetes</td>
<td></td>
</tr>
<tr>
<td>Chytrid</td>
<td></td>
</tr>
<tr>
<td>Zygomycetes</td>
<td></td>
</tr>
<tr>
<td>Microsporidia</td>
<td></td>
</tr>
<tr>
<td>UK- Unknown</td>
<td></td>
</tr>
<tr>
<td>UP- Unpublished</td>
<td></td>
</tr>
</tbody>
</table>

Source: NCBI Genome Project

Source: Fungal Genome
http://fungalgenomes.org/wiki/Main_Page

References

1. V. Wood et al., Nature 415, 871 (Feb 21, 2002).
Appendix II. Multiple sequence alignment and phylogenetic tree of bHLH TF family.

MSA of basic and helix region spanning a 29 amino acid region from 179 bHLH domain sequences produced using MUSCLE. All bHLH domains from the genomes of Candida clade, Saccharomyces clade, Y. lipolytica and S. pombe are included. The MSA was used to prepare a Neighbor-Joining tree using amino acid substitution model, with 1000 bootstrap replicates using MEGA 4. The phylogeny shows clustering of Hemiascomycetes bHLH family in six clusters (I to VI). Clusters II to VI are collapsed for representation of the tree. Cluster I shows the presence of two Candida clade-specific domain families represented by C. albicans orf19.6824 (branches colored brown) and orf19.921 (branches colored green). S. cerevisiae sequences are highlighted with Red filled circles and C. albicans using Green filled circles.
Appendix III. Multiple sequence Alignment of GATA Zinc Finger Domain.

The alignment of 102 GATA domain sequences from *Candida* clade and *Saccharomyces* clade organisms along with *A. nidulans* AreA, *G. gallus* C-terminal GATA-1 and *C. elegans* END1 was prepared using MUSCLE. The alignment highlights the conservation and differences between the different GATA domain sequences. *C. albicans* orf19.4301 and its orthologs in *Candida* clade have a non-canonical GATA domain as these sequences have four amino acid residues between the first two cysteines at position 8 and 13, and a 40 amino acid residue insert between cysteine 13 and cysteine 56. The region C-terminal to cysteine 59 shows conservation with cGATA-1 residues.