LIST OF FIGURES

CHAPTER - 1

Fig 1.1 Location map of the Plant site Nagothane.
Fig 1.2 Receptors around the plant site.

CHAPTER - 2

Fig 2.1 Variation of plume patterns with the thermal structure of the atmosphere.
Fig 2.2 The depression of plume in fields of eddies of various sizes.
Fig 2.3 Transport of plume around the side of a hill under stable atmospheric conditions
Fig 2.4 Pollutant transport over an isolated hill of moderate elevation in an unstable condition.
Fig 2.5 The accumulation of pollution in a valley due to nighttime drainage winds.
Fig 2.6 A Valley eddy produced by a strong geostropic wind and intensified by anbatic wind.
Fig 2.7 The diurnal evaluation of winds in a Valley under the conditions of light gradient winds.
Fig 2.8 Effects of siting a pollution source n the lee of a sharp - edged cliff. (Terrain downwash)
Fig 2.9 A plume in a deep valley under a mountain wind regime
Fig. 2.10 Stratified flow over two - dimensional hills in a channel.
Fig 2.11 Sketch of flows over a three - dimensional hill in (a) Neutral and (b) Very stable stratification.
Fig 2.12 Stratified flow over a three dimensional hill hydraulic jump and corresponding center plane streamline and surface shear stress patterns.
Fig 2.13 Cavitation and corresponding center plane streamline and surface shear stress pattern
CHAPTER - 3

Fig 3.1 Schematic illustration of box or scaler model of urban diffusion.
Fig 3.2 Schematic illustration of flushing of pollutants through a city.
Fig 3.3 Transportation variation of pollutant concentration after emission is shut down.

CHAPTER - 4

Fig 4.1 The radiative processes that maintain the heat balance of the earth atmosphere system.
Fig 4.2 Terrain adjustment (adjustment of plume height due to terrain).

CHAPTER - 5

Fig 5.wr.1 Windrose for Jan 1
Fig 5.wr.2 Windrose for Jan 16
Fig 5.wr.3 Windrose for Jan 28
Fig 5.wr.4 Windrose for April 2
Fig 5.wr.5 Windrose for April 14
Fig 5.wr.6 Windrose for April 30
Fig 5.wr.7 Windrose for July 3
Fig 5.wr.8 Windrose for July 15
Fig 5.wr.9 Windrose for July 31
Fig 5.wr.10 Windrose for Nov 4
Fig 5.wr.11 Windrose for Nov 16
Fig 5.wr.12 Windrose for Nov 28
Fig 5.g.1 Diurnal variation of the PBL height (Jan. 1).
Fig 5.g.2 Diurnal variation of the PBL height (Jan. 16).
Fig 5.g.3 Diurnal variation of the PBL height (Jan.28).
Fig 5.g.4 Diurnal variation of the PBL height (April.2).
Fig 5.g.5 Diurnal variation of the PBL height (April.14).
Fig 5.g.6 Diurnal variation of the PBL height (April.30).
Fig 5.g.7 Diurnal variation of the PBL height (July.3).
Fig 5.g.8 Diurnal variation of the PBL height (July.15).
Fig 5.g.9 Diurnal variation of the PBL height (July.31).
Fig 5.g.10 Diurnal variation of the PBL height (Nov.4).
Fig 5.g.11 Diurnal variation of the PBL height (Nov.16).
Fig 5.g.12 Diurnal variation of the PBL height (Nov.28).

Fig 5.1.1 (a) 1-hour average SO₂ pollution isopleth for hypothetical flat topography (Jan.1)
Fig 5.1.1 (b) 1-hour average SO₂ pollution isopleth for actual topography (Jan.1)
Fig 5.1.2 (a) 1-hour average SO₂ pollution isopleth for hypothetical flat topography (Jan.16)
Fig 5.1.2 (b) 1-hour average SO₂ pollution isopleth for actual topography (Jan.16)
Fig 5.1.3 (a) 1-hour average SO₂ pollution isopleth for hypothetical flat topography (Jan.28)
Fig 5.1.3 (b) 1-hour average SO₂ pollution isopleth for actual topography (Jan.28)
Fig 5.1.4 (a) 1-hour average SO₂ pollution isopleth for hypothetical flat topography (April.4)
Fig 5.1.4 (b) 1-hour average SO₂ pollution isopleth for actual topography (April.4)
Fig 5.1.5 (a) 1-hour average SO₂ pollution isopleth for hypothetical flat topography (April.14)
Fig 5.1.5 (b) 1-hour average SO₂ pollution isopleth for actual topography (April.14)
Fig 5.1.6 (a) 1-hour average SO₂ pollution isopleth for hypothetical flat topography (April.30)
Fig 5.1.6 (b) 1-hour average SO₂ pollution isopleth for actual topography (April.30)
Fig 5.1.7 (a) 1-hour average SO$_2$ pollution isopleth for hypothetical flat topography (July.3)

Fig 5.1.7 (b) 1-hour average SO$_2$ pollution isopleth for actual topography (July.3)

Fig 5.1.8 (a) 1-hour average SO$_2$ pollution isopleth for hypothetical flat topography (July.15)

Fig 5.1.8 (b) 1-hour average SO$_2$ pollution isopleth for actual topography (July.15)

Fig 5.1.9 (a) 1-hour average SO$_2$ pollution isopleth for hypothetical flat topography (July.31)

Fig 5.1.9 (b) 1-hour average SO$_2$ pollution isopleth for actual topography (July.30)

Fig 5.1.10 (a) 1-hour average SO$_2$ pollution isopleth for hypothetical flat topography (Nov.4)

Fig 5.1.10(b) 1-hour average SO$_2$ pollution isopleth for actual topography (Nov.4)

Fig 5.1.11(a) 1-hour average SO$_2$ pollution isopleth for hypothetical flat topography (Nov.16)

Fig 5.1.11(b) 1-hour average SO$_2$ pollution isopleth for actual topography (Nov.16)

Fig 5.1.12(a) 1-hour average SO$_2$ pollution isopleth for hypothetical flat topography (Nov.28)

Fig 5.1.12(b) 1-hour average SO$_2$ pollution isopleth for actual topography (Nov.28)