CHAPTER 8

Optimizing multiple objectives under system of max-Archimedean fuzzy relation equations

8.1 Introduction

Optimization is a procedure to hunt for the best solution of a decision problem offering the most suitable alternative available in its domain. Optimization occurs at various levels and stages in real life usage systems whether materialistic or non-materialistic. So a good optimization strategy can affect the overall efficiency of the system. A real life large scale problem involves a wide number of factors and relations amongst them. Due to association and interaction of a large number of components in the system it is impractical to expect the desired accuracy in achieving the preferred goal. The reason behind this is the subjectivity that is accompanied with different components and their interactions. Moreover, it is natural when the interaction amongst the different components results in vagueness. Most often it becomes difficult to neglect the subjectivity that usually appears in their relations. Fuzzy relations offer the appropriate tool to handle this situation when the factors are somehow related or in other words when the relation amongst them are imprecise or not clear. Fuzzy information in relational structures is processed via fuzzy relation equations (FRE).

Generally, an optimization problem involves a single objective to be optimized. But dealing with reality it is not rare to face problems that demand a number of objectives to be optimized simultaneously. Such problems are categorized as ‘multiobjective or multicriterion optimization problems (MOOP)’. Moreover, the rise of several conflicting objectives enhances the complexity of the problem, conflicting in the sense that they are negatively correlated. In this case, it is hardly possible to find the solutions that optimize all the objectives together. So, multiobjective optimization generally aims to end up with one or more good compromising solutions for the problem. Hence, the term optimize
means finding such a solution which would give the values of all the objective functions acceptable to the decision maker [114].

The first notion of optimality in this setting goes back to Edgeworth [26] in 1881 and Pareto [122] in 1896 and is still the most widely used. In this situation, instead of a single optimal solution usually a set of good, alternative solutions also called as the Pareto optimal set is obtained. These solutions are optimal in the sense that no other solution in the search space is better than them when all objectives are considered at the same time. When the objectives are competing, one objective has to sacrifice for the others and vice-versa. The situation becomes more complicated when the number of objectives is large. Although a wide class of methods is available to deal with MOOP but an efficient procedure is always at demand. So this area of research has always been fascinating for the researchers.

In the same direction evolutionary techniques or algorithms (EA) have emerged as a powerful tool to deal these problems efficiently. They have some inherent features to solve such kind of problems regardless of much mathematical background required. Evolutionary algorithms perform well even in multimodal, nonlinear search spaces. Due to this striking characteristic, these algorithms do better than the other optimization methods used to solve MOOP. Jones et al. [62] reported that 90% of the approaches to solve multiobjective optimization problems aimed to approximate the true Pareto front for the underlying problem. A majority of these used a meta-heuristic technique, and 70% of all metaheuristics approaches were based on evolutionary approaches.

The two general approaches that are used to handle MOOP are: (i). Scalarizing multiple objectives into a single objective by translating multi-criterion space to single-criterion space based upon some utility function. This translation requires some prior information about the problem from the decision maker in terms of some utility function or predefined preference vector of weights denoting the measures of importance of the different objectives etc. This method is conceptually straight-forward and computationally efficient and works well even when the dimension of the criterion space
is large. For the practical standpoint a solution close to the solutions in Pareto optimal front is obtained, representing the most suitable option from the objective space. (ii). The second general approach is to determine the entire Pareto optimal front or a representative subset of solutions that are incomparable to each other in terms of the objectives values. Though the method is a smart way to estimate a set of optimal solutions for the problem but is computationally challenging and faces difficulty as the problem size and the number of objectives increase. In addition to it many times the method struggles to obtain the diverse set of solutions [19]. Some best known population based Pareto approaches to deal with MOOP are present in [28,29,55,77,159,168]. A comprehensive survey of all methods to solve MOOP is presented in [16].

The first approach to solve MOOP is generally ignored even if it is efficient and easy to design because of its sensitivity to the prior inputs it demands to solve the problem. The entire beauty of this method lies in the efficient incorporation of the prior information to the problem.

We are considering a fuzzy relational multiobjective optimization problem (FRMOOP) with the feasible domain designed by a system of fuzzy relational equations. The problem domain is generally non-convex and the objective functions considered are not necessarily linear. With a careful observation of the feasible domain, an effective hybridized genetic algorithm is proposed without determining the complete set of minimal solutions of system of fuzzy relational equations. The goal of the method is to generate a set of approximate efficient solutions that allows the decision maker to choose the best compromising solution.

A great deal of literature has been devoted to the area of multiobjective optimization as it has always been challenging to deal with numerous objectives having different characteristics at the same time. In area of fuzzy relational optimization, it is still in budding stage. Firstly, Wang [182] studied the problem of multiobjective mathematical programming with multiple linear objective functions subjected to max-min composite fuzzy relation equation. But the work required the knowledge of all minimal solutions of
the system of fuzzy relational equations, which is not trivial at all.

Loetamonphong et al. [90] studied MOOP with multiple objective functions constrained to a set of max-min fuzzy relational equations. Since the feasible domain of such a problem is non-convex in general and the objective functions are not necessarily linear, traditional optimization methods may become ineffective and inefficient. Therefore, taking advantage of the special structure of the solution set, they developed a reduction procedure to simplify the problem. Then they proposed a genetic algorithm to find the Pareto optimal solutions.

Khorram and Zarei [69] considered a multiple objective optimization model subject to a system of fuzzy relational equations with max-average composition and presented a reduction procedure in order to reduce problem dimension and then used a modified genetic algorithm to solve the problem.

Zhang et al. [216] provided an efficient method utilizing a max-pro optimum scheme for solving the max-min decision function in a fuzzy optimization environment. They proposed a method significantly simplifying the max-min optimum solving problem, especially in the case when the number of objectives and constraints is large.

Jiménez et al. [60] considered multiobjective linear programming problem. They assumed that the decision maker has fuzzy goals for each of the objective functions. In the case that one of our goals is fully achieved, a fuzzy-efficient solution may not be Pareto-optimal and proposed a general procedure to obtain a non-dominated solution, which is also fuzzy-efficient. Further Jiménez and Bilbao [61] proposed that in fuzzy optimization it is desirable that all fuzzy solutions under consideration are attainable, so that the decision maker will be able to make a posteriori decisions according to current decision environments. A case study was analyzed and the proposed solutions from the evolutionary algorithm considered were given.

Thapar et. al [177] considered a multiobjective optimization problem subjected to a
system of fuzzy relational equations based upon the max-product composition. A well structured nondominated sorting genetic algorithm was applied to solve the problem.

In most of the existing literature, max-min composition or the max-product composition based fuzzy relational constraints have been discussed. A restriction with max-min composition is that it is conservative in nature; it has limitations over the application towards the real world decision problems. It is generally used when a system requires conservative solutions in the sense that the goodness of one value cannot compensate the badness of another value [90]. In this paper, we consider the multiobjective optimization problem with max-Archimedean composition based on an Archimedean t-norm and propose a hybrid genetic algorithm to determine the set of approximate efficient solutions of the considered optimization problem.

8.2 The problem

Consider $A = [a_{ij}]$, $0 \leq a_{ij} \leq 1$, be a $m \times n$ dimensional fuzzy matrix and $b = [b_1, b_2, \ldots, b_n]$, $0 \leq b_j \leq 1$, be a n-dimensional vector. The system of fuzzy relational equations is defined by A and b as follows:

$$x \circ A = b$$

(8.1)

where “\circ” denotes max-\ominus composition of x and A; \ominus denotes the Archimedean t-norm operator from the residuated lattice $L = \langle [0,1], \land, \lor, \Theta, 0, 1 \rangle$. It is intended to find a solution vector $x = [x_1, x_2, \ldots, x_m]$, with $0 \leq x_i \leq 1$, such that

$$\max_{i=1}^m (x_i \circ a_{ij}) = b_j, \forall j = 1, 2, \ldots, n$$

(8.2)
Let $I = \{1, 2, \ldots, m\}$ and $J = \{1, 2, \ldots, n\}$ be the index sets. We consider the following multiobjective optimization model with max-Archimedean fuzzy relational equations as constraints:

\[
\begin{align*}
\text{Min} \{ z_1 = f_1(x), z_2 = f_2(x), \ldots, z_s = f_s(x) \} & \quad (8.3) \\
\text{s.t.} \quad \max_{i \in I} (x_i \odot a_{ij}) &= b_j, \quad \forall j \in J \\
0 \leq x_i \leq 1, & \quad \forall i \in I
\end{align*}
\]

where $f_k(x)$ is a linear or nonlinear objective function, $k \in K = \{1, 2, \ldots, s\}$. In this multiobjective optimization problem, the constraint set is designed by the system of fuzzy relational equations defined in (8.2). This situation appears in real life optimization problem whenever the interactions between activities and the resource utilization exhibit imprecise character.

The characterizations of solution space and consistency conditions have been discussed in chapters 7. According to [4,49,86], if $X(A,b) \neq \emptyset$, then in general, it is a non-convex set which is completely determined by unique maximum solution \bar{x} and possibly finite number of minimal solutions \bar{x}. The maximum solution is computed explicitly by the residual implicator (pseudo complement) as:

\[
\bar{x} = A \Theta b = [\min_{i \in I} (a_{ij} \Theta b_j)]_{i \in I},
\]

where $a_{ij} \Theta b_j = \sup \{ x_i \in [0,1] | (x_i \odot a_{ij}) \leq b_j \}$

The feasible domain for the problem is given by the union of different convex sub-feasible regions formed with the help of different minimal solutions say L and the unique maximal solution \bar{x}. Let $X^p = \{ x \in X | \bar{x}^p \leq x \leq \bar{x} \}$ denotes p^{th} sub-feasible region given which is a lattice. The entire solution set $X(A,b)$ of system (8.2) is given as:

\[
X(A,b) = \bigcup_{p=1}^{L} X^p = [\bar{x}^1, \bar{x}] \cup [\bar{x}^2, \bar{x}] \cup \ldots \cup [\bar{x}^p, \bar{x}] \cup \ldots \cup [\bar{x}^L, \bar{x}].
\]
Definition 8.2.1. For each \(x \in X(A,b) \), we define \(z^i = (z^i_1, z^i_2, \ldots, z^i_s) \) to be its criterion vector where \(z^i_k = f_k(x), \ k \in K \).

Let us define objective space \(Z = \{ z^i = f(x) \mid x \in X(A,b) \} \) as the image of the decision space under the mapping \(f : X(A,b) \to R^s \) where \(R^s \) is the \(s \)-dimensional Euclidean space. The image of a solution under this mapping in the objective space is known as the criterion vector.

Definition 8.2.2. A point \(x' \in X(A,b) \) is an efficient or a Pareto optimal solution to the problem (8.3) iff there does not exist any \(x \in X(A,b) \) such that \(f_k(x) \leq f_k(x'), \forall k \in K \), and \(f_k(x) < f_k(x') \) for at least one \(k \in K \). Otherwise, \(x' \) is an inefficient solution.

Definition 8.2.3. For any two criterion vectors, \(z^1, z^2 \) we say that \(z^1 \) dominates \(z^2 \) iff \(z^1 \preceq z^2 \) and \(z^1 \neq z^2 \) i.e. \(z^1_k \leq z^2_k, \forall k \in K \) and \(z^1_k < z^2_k \) for at least one \(k \).

Definition 8.2.4. \(z' \in Z \) is said to be nondominated iff there does not exist any \(z \in Z \) that dominates \(z' \), otherwise \(z' \) is a dominated criterion vector.

The set of all efficient solutions is called as the efficient set and the image of the efficient set in objective space is the nondominated set.

Definition 8.2.5. The criterion vector \(z^* \) composed of the least attainable objective function values in the problem domain is called the ideal point i.e. \(\forall k \in K \)

\[
z^*_k = \{ \overline{z}_k \mid \overline{z}_k = \min(z_k(x)), \ x \in X \}
\]

In general, the concept of ideal point is impractical and it corresponds to a non-existent solution. But it plays an important role in numerous methods used to solve MOOP [18].
Definition 8.2.6. An objective vector z^{*} formed with components slightly less than that of the ideal objective vector is known as the utopian objective vector i.e. $z^{*}_k = z^*_k - \varepsilon_k$ with $\varepsilon_k > 0, \forall k \in K$.

8.3 Utility function approach for MOOP

The utility function approach has always been the favorite and simple technique to solve the multicriterion optimization problems due to the lesser complexity involved. Moreover, it is hardly possible to determine the solutions that optimize all the objectives together. A utility function $U : R^r \rightarrow R$ is a mathematical representation of decision maker’s preferences mapping criterion vectors into the real line giving a value of utility for decision maker. It is used as an approximation of the preference function of the decision maker that typically cannot be expressed mathematically. Basically, the utility function combines given multiple objectives into a single objective function by incorporating the prior information supplied by the decision maker about the problem. Using the utility function the problem defined in (8.3) transforms to the following mathematical programming problem:

\[
\text{Minimize } U(z_1(x), z_2(x), \ldots, z_r(x)) \quad (8.5)
\]
\[
\text{s.t. } x \in X(A,b)
\]

Multiple objectives can be combined into a single objective in many ways. Different utility functions have been studied in the literature in this field [18,96,97,101,171]. The most general utility functions that are used in literature are weighted metric utility function and weighted linear utility function, weighted exponential sum, weighted product, weighted max etc. The transformed fuzzy relational optimization problems based on some of these utility functions are described as follows:
8.3.1 Weighted linear utility function

This method linearly combines different objectives to a scalarized single objective as follows:

\[Z(x) = \sum_{k=1}^{s} \lambda_k f_k(x) \]

s.t. \(x \in X(A,b) \)

where \(f_k(x) \) is the \(k^{th} \) objective function with the weight vector \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_s) \), meeting the following conditions \(\lambda_k > 0, \sum_{k=1}^{s} \lambda_k = 1; \) for \(k \in K \).

i.e., the aggregated function to be optimized is the convex combination of all the objectives under considerations. This is the most widely studied and simple kind of utility function that is used. Generally, the weights represent the relative importance of the objectives. The success of the method lies in the efficient determination of weights for the objectives. A detailed analysis of this method is presented in the work [97,101,171]. This method works well as far as convex multiobjective optimization problems are concerned but lacks sometimes in finding certain Pareto optimal solutions in case of non-convex MOOP.

Theorem 8.3.1.[101]. The solution to the problem presented in equation (8.5) is Pareto-optimal iff the weight is positive for all objectives i.e. \(\lambda_k > 0, \forall k \in K \).

Besides its powerful qualities the method also suffers from some drawbacks. One is the scaling of objectives that is required while selecting the weights. As different objectives might attain values of different orders, scaling of objectives must be performed before aggregation so that each objective could have magnitude of same order. Secondly, while handling mixed kind of objectives all objectives need to be converted to the same type using the duality principle as discussed in [18].
8.3.2 Weighted metric utility function

This method presents another approach of combining multiple objectives via the distance minimization of the particular solution from the ideal point based on different metrics. In this method, for a non-negative weight vector the utility function using the distance measure based on \(p \)-metric is considered as follows:

\[
Z_p(x) = \left(\sum_{k=1}^{s} \lambda_k \mid f_k(x) - z^*_k \mid^p \right)^{1/p}
\]

s.t. \(x \in X(A, b) \)

Where \(p \in (1, \infty) \) is the distance metric and \(z^* \) is the ideal point. When \(p = 1 \), the resulting problem is equivalent to the weighted sum approach. For \(p = 2 \), the Euclidean distance is minimized. When \(p = \infty \), the metric is also known as the Tchebycheff metric and the transformed utility function has a special name as Weighted Tchebycheff function given as:

\[
Z_{\infty}(z, z^*, \lambda) = \max_{k=1}^{s} \lambda_k \mid (f_k(x) - z^{**}_k) \mid
\]

where \(\lambda = (\lambda_1, \lambda_2, ..., \lambda_s) \) \(\forall \lambda_i \geq 0 \), and \(z^{**} \) is the reference point. When the Tchebycheff metric is used, each and every Pareto optimal solution of the considered MOOP can be found if the utopian point is used as the reference point [101,171]. For each efficient solution there exists a weighted Tchebycheff scalarizing function such that it is global optimum (minimum) of the considered MOOP. By altering the weight vector at each run, the entire Pareto optimal set can be obtained. Alike the weighted sum approach this method also requires the scaling of objectives before combining them due to the same reason as mentioned in case of linear utility function. Moreover, the method is sensitive to the choice of the metric being used and might not be suitable in case of continuous MOOP as the aggregating function is not continuous in nature.
It is noteworthy that all weighted Tchebycheff utility functions have optima in the nondominated set and vice-versa. Thus, finding the whole nondominated set is same as finding optima of all weighted Tchebycheff scalarizing functions. Hence, we reconsider the problem (8.3) as optimization of different weighted Tchebycheff scalarizing functions. In fact, it is enough to consider different weighted Tchebycheff scalarizing functions with normalized weight vectors. Each efficient approximate solution is the global optima of the current weighted utility function.

8.3.3 Weighted- product utility function

To allow functions with different orders of magnitude to have similar significance and to avoid having to transform objective functions, one may consider the following formulation:

\[
Z(x) = \prod_{k=1}^{s} [f_k(x)]^{\lambda_k}
\]

s.t. \(x \in X(A, b) \)

where \(\lambda = (\lambda_1, \lambda_2, ..., \lambda_s) \) \(\forall \lambda_i \geq 0 \), are weights denoting the relative importance of the objectives. All these described methods and many more [18,96] based on the aggregation of objectives require prior knowledge about the problem in terms of the aggregating coefficients.

8.4 Multiobjective hybrid genetic algorithm (MOHGA)

In multiobjective optimization the focus is on generating the entire efficient solution set to support decision making. This set of solutions allows the decision maker to choose a good compromise solution for the practical purpose. The computational complexity of MOOP directs the use of metaheuristics as the most promising method to solve them. In recent years, hybridized evolutionary algorithms have been proved as a potent technique to solve MOOP, as they offer more competencies and result in much diversified solution
set. The method possesses a combined effect of recombination operators and local search scheme. They are also known as the genetic local search or memetic algorithm. Different aspects of hybrid genetic algorithms and some of its applications are discussed in [56-58].

A great deal of literature available for solving MOOP discusses the application of genetic algorithm. A hybrid evolutionary algorithm with local search for multiobjective optimization was first implemented by Ishibuchi and Murata [58]. The goal of multiple objective metaheuristics is to generate good approximations to the nondominated set. Of course, the true approximation is the whole nondominated set itself. The multiobjective hybridized genetic algorithm (MOHGA) that we are developing; performs the simultaneous optimization of all aggregated functions constructed by the weighted sum approach or weighted Tchebycheff approach. At each run, a randomly generated aggregated objective is optimized that results in an approximate solution belonging to the set of efficient solutions. A hybrid genetic algorithm is used to optimize each of the weighted utility function considered. The evolutionary procedure that we are applying to solve (8.5) is described as follows:

8.4.1 Initialization

The feasible domain for the considered problem has a special structure. As the feasible region is designed by a system of fuzzy relational equations, it might be the case that some of the variables assume specific value. So it is good to perform elementary reduction first to reduce the problem size.

With the help of computed maximum solution \(\hat{x} \), the characteristic matrix \(\bar{M} = (\bar{m}_{ij})_{m \times n} \) of the system \(x \odot A = b \) is defined as:

\[
\bar{m}_{ij} = \begin{cases}
[(a_j \theta b_j), \hat{x}_i], & \text{if } (\hat{x}_i \odot a_j) = b_j \\
\phi, & \text{otherwise}
\end{cases} \quad (8.6)
\]
where \(a \otimes b = \inf \{ z \in [0,1] | (z \odot a) \geq b \} \) \(\forall a, b \in [0,1] \). Each element \(m_{ij} \) of characteristic matrix \(\overline{M} \) offers all the possible values for the variable \(x_i \) to satisfy the \(j^{th} \) equation. The system \(x \odot A = b \) is consistent if and only if \(\overline{M} \) has no column with all elements as empty elements i.e. every equation is satisfied by at least one variable.

The characteristic matrix \(\overline{M} \) of \(A \) is further simplified to a binary matrix \(M \) as follows:

\[
m_{ij} = \begin{cases}
1 & \text{if } m_{ij} \neq \phi \\
0 & \text{otherwise}
\end{cases}
\]

(8.7)

Note that the entry \(m_{ij} = 1 \) in \(\overline{M} \) corresponds to a possible selection of the \(i^{th} \) variable that satisfies the \(j^{th} \) equation.

Now \(\exists b_j = 0, j \in J \), its corresponding column in \(\overline{M} \) and the corresponding component from \(b \) can be removed. A variable is said to be pseudo-essential if the row corresponding to it has only empty elements in the characteristic matrix \(\overline{M} \) of \(A \). Such variables satisfy only those equations for which \(b_j = 0 \). It is clear that the role of pseudo-essential variable is trivial. So, its corresponding row from \(M \) can be removed.

Definition 8.4.1. For column \(j \in J \), if there is only one \(i \in I \) such that \(m_{ij} = 1 \) then variable \(x_i = \tilde{x}_i = \bar{x}_i \) is called super-essential for all \(x \in X(A, b) \).

For the sake of solvability of the system the presence of super-essential variables is must in all the solutions. To reduce the size of the problem, other equations that are satisfied by these variables, can also be exempted for further computation.

Once the pseudo-essential variables have been detected and super-essential variables are fixed, the size of the system reduces. The whole reduction procedure used is explained via the following example.
For example: Consider the system of $\max \odot$ fuzzy relational equations with Lukasiewicz t-norm based composition with the fuzzy matrices A and b.

\[
A = \begin{bmatrix}
1 & 0.9 & 0.7 & 0.2 & 0.3 & 0 \\
1 & 0.2 & 0.8 & 0.7 & 0.5 & 0.1 \\
0.5 & 1 & 0.3 & 0.9 & 0.7 & 0.4 \\
1 & 0.8 & 0.6 & 0.3 & 0.1 & 0 \\
0.6 & 0.4 & 0.8 & 0.5 & 0.3 & 0.1 \\
0.8 & 1 & 0.5 & 0.4 & 0.3 & 0
\end{bmatrix},
\]

\[
b = [1 \ 0.8 \ 0.6 \ 0.4 \ 0.2 \ 0]
\]

The maximum solution is computed as $\hat{x} = (0.9 \ 0.7 \ 0.5 \ 1 \ 0.8 \ 0.7)$. As $\hat{x} \circ A = b$, the system is consistent. The characteristic matrix \overline{M} of A is calculated by (8.6) as:

\[
\overline{M} = \begin{bmatrix}
\phi & 0.9 & \phi & 0.9 & [0,0.9] \\
\phi & \phi & \phi & 0.7 & 0.7 & [0,0.7] \\
\phi & \phi & \phi & 0.5 & 0.5 & [0,0.5] \\
1 & 1 & 1 & \phi & \phi & [0,1] \\
\phi & \phi & \phi & \phi & \phi & [0,0.8] \\
\phi & \phi & \phi & \phi & \phi & [0,0.7]
\end{bmatrix}
\]

The simplified binary matrix M by (8.7) is:

\[
M = \begin{bmatrix}
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

As $b_6 = 0$, the column corresponding to this equation in \overline{M} and corresponding component b_6 from b can be removed. The row corresponding to the variable x_6 has all elements as
zeros in M, the variable x_6 is pseudo-essential and can be excluded for further computation. The first equation is satisfied by only variable x_4, x_4 is super-essential and is fixed to be $x_4 = \tilde{x}_4$ in all solutions. Variable x_4 also satisfies second and third equations, so these equations can also be exempted for further computation. This reduces the problem to $x \circ A = b'$ where

\[
A' = \begin{bmatrix}
0.2 & 0.3 \\
0.7 & 0.5 \\
0.9 & 0.7 \\
0.3 & 0.1 \\
0.5 & 0.3 \\
0.5 & 0.4
\end{bmatrix}, \quad b' = [0.4 \ 0.2]
\]

For the sake of solvability of FRE the random generation of population is not feasible as it might result in unnecessary exploration of the search space. Firstly, the super-essential variables have been detected and their values are fixed as $x_j = \tilde{x}_j$. An initial population of fixed size is created with the fixed variables assuming the value \tilde{x}_j and the variables that are not fixed assuming a random value in the range $(0, \tilde{x}_j)$. Each solution $x = (x_1, x_2, \ldots, x_m)$ is the member of $X(A,b)$. Now the feasibility of generated solutions is examined. The following algorithm has been used to maintain the feasibility of the solutions:

Algorithm 1: For maintaining feasibility of solutions

Step 1: Choose a violated constraint j. Let $D_j = \{i \in I \mid a_{ij} \geq b_j\}$.

Step 2: Randomly choose an element $k \in D_j$. For $a_{kj} > b_j$ or $\tilde{x}_k = a_{kj} \Theta b_j$, set $x_k = a_{kj} \Theta b_j$. Otherwise, assign a random number between $[a_{kj} \Theta b_j, \tilde{x}_k]$ to x_k.

Step 3: Check the feasibility of the new solution. If the solution is feasible stop else go to step 1 and repeat the process.
8.4.2 Selection

Once the initial population has been generated, selection of good individuals is the next step to apply the recombination operator. The selection of good individuals at this step is performed via the rank selection scheme. The individuals are evaluated using the current utility function for that particular run. A normalized weight vector giving a new utility function is randomly selected for each run.

The probability of selection for each individual is determined by the following formula:

\[
p(x') = \frac{1}{N} \sum_{i=1}^{N} \frac{\max(z(x')) - z(x')}{-\max(z(x'))}, \quad t = 1, 2, ..., N
\]

where \(z(x') \) denotes the fitness of the \(t^\text{th} \) individual with respect to the objective function defined with the current weight vector for that run and \(N \) is the population size. A pre-specified number of parent solutions are selected at the end. Selected individuals undergo the recombination process so as to create a new population by using genetic operators \textit{crossover} and \textit{mutation}.

8.4.3 Crossover

Owing to the nature of solution space of the problem, the conventional real coded crossover techniques are not feasible. A domain specific crossover scheme is designed that generates feasible individuals. The algorithm used for crossover can be described in the following steps:

Algorithm 2: Crossover

Get the matrices \(A, b \) and find the maximum solution \(\bar{x} \) by (8.4) and set parameters
$0 \leq \alpha \leq 1$, $\beta \geq 1$, $0 \leq \zeta \leq 1$, $0 \leq \delta \leq 1$.

Randomly select two individuals x_1, x_2 from the selected population.

For $i=1,2$

Generate a random number $\epsilon \in (0,1)$

If $(\epsilon \geq \zeta)$

$$x_i = \beta x_i - (\beta - 1)\tilde{x}$$

Else

$$x_i = \alpha x_i + (1 - \alpha)\tilde{x}$$

End

Generate a random number $\epsilon_2 \in (0,1)$

If $(\epsilon_2 < \delta)$

If $x_i \circ A = b$

Go to evaluation procedure

Else

$x_i \leftarrow x_i^\text{next}$

$$x_i = \beta x_i - (\beta - 1) x_2$$

If $x_i \circ A \neq b$

Make x_i feasible using Algorithm 1

Go to evaluation procedure.

The repeated linear combinations of individuals draw the generated individuals inside the feasible space. Here α, β are small numbers close to 1 respectively and are generally kept small. For our problem, we are taking $\alpha = 0.99, \beta = 1.0085, \zeta = 0.012, \delta = 0.99$.

183
8.4.4 Mutation

Mutation randomly perturbs a candidate solution by exploiting the search space with a hope to create a better solution in the problem domain. We adopt the following mutation procedure to solve our problem:

Algorithm 3: Mutation

Step 1: Get the matrices A, b and find the maximum solution \tilde{x} by (8.4) and set the mutation probability $\delta = 0.1$.

Step 2: Generate random number $r_i \in (0,1)$ for each bit of the individual selected from crossed population.

Step 3: For $i \in I$, if $r_i \leq \delta$, randomly assign x_i a number from $(0, \tilde{x}_i)$.

Step 4: For the modified $x = (x_1, x_2, \ldots, x_m)$ check feasibility $x \circ A = b$. If $x \circ A = b$ go to the evaluation procedure else make the individual feasible via Algorithm 1.

The operator is designed such that the mutated individuals remain feasible. The mutation probability $\delta = 0.1$ has been used i.e. each component of all the solution vectors has 10 percent chances of being mutated.

Apart from the general structure of GA, the procedure also keeps track of the non-dominated solutions. This feature of the procedure differentiates it from the traditional metaheuristics used to solve MOOP. For this the nondominated solutions in the initial population having good ranks are identified and their replicates are maintained separately for that current population as the secondary population. To determine the rank of a solution concept of domination, as explained through Definitions 8.2.1-8.2.4 has been used. The rank r_p, of an individual p is determined by the number of dominators or solutions whose criterion vectors dominate this individual’s criterion vector. It is defined as,

$$r_p = N - \text{number of dominators, } p = 1, 2, \ldots, N.$$
The probability of selection of an individual with rank r_p is given by
\[\frac{r_p}{\sum_{i=1}^{N} r_i} \]

Once new solutions are obtained after the recombination process a pre-specified number of nondominated solutions (the elite solutions) are randomly selected from the secondary population and added to the newly generated solutions.

8.4.5 Local search scheme

The combined population formed after the recombination operators along with the elite nondominated solutions selected from the secondary population undergoes the local search operation. While applying the local search scheme it is necessary to maintain the balance between the local search and the genetic search. The imbalance in the two can cause the unfruitful exploration of the search space that in turn increases the time to run the algorithm. When local search is applied to a solution, a random new point is selected from the neighborhood of the current point. We consider the neighborhood $(-0.05, 0.05)$ of radius 0.05. If the new solution provides a better value of the current utility function for that run, the selected solution is replaced by the current solution. Otherwise, some other neighbor is selected and tested against the current solution. To decrease the CPU time spent on the local search, the number of solutions examined in neighborhood of a solution is pre-fixed. The method terminates if no further improvement is possible until the number of successive fails to examine the improved solution ends up. If no improved solution is obtained the initial solution is kept as such in the population. This procedure is repeated for all the solutions in the population that undergo the local search procedure.

The local search operator by its nature is capable of improving the scalar objective formed. But the selection of individuals for local search is a crucial step to be emphasized on. The choice of the individuals for local search can be done in one of the following ways [145]:

- Hybrid strategy # 1: Selecting some fixed number of nondominated solutions according
to their domination rank in that generation.

Hybrid strategy #2: Choose a number of individuals by assigning a probability using some selection operator.

Hybrid strategy #3: Selecting individuals based on some assigned probability are chosen in a purely random fashion.

Ishibushi and Murata [58] applied the hybrid strategy#2 for the multiobjective TSP problem. The overall procedure applied to solve problem (8.5) can be described in Algorithm 4 as:

Algorithm 4: MOHGA procedure

Step 1: After reducing the size of the problem and fixing the variables, generate the initial population of size \(N_p \).

Step 2: Extract the nondominated solutions determined in the current population as secondary population.

Step 3: Select \(N \) good solutions from the current population and apply genetic operators, crossover using Algorithm 2 and mutation using Algorithm 3 on the selected solutions.

Step 4: Randomly select \(N_p - N \) solutions from the secondary population and add to the newly generated population in step 3 and combine them to form the final population of size \(N_p \).

Step 5: Apply local search probabilistically to each of the solution in the final population.

Step 6: Go to step 1 if the termination condition is not satisfied.

The above algorithm repeats for 100 generations to optimize the pre-defined no. of considered utility functions based on a different weight vector for each run. Figure 8.1 shows the whole procedure of the Algorithm 4 used to solve FRMOOP in (8.5).
8.5 Results and discussions

In this section, results of the proposed genetic algorithm for multiple linear and nonlinear optimization problems are discussed. We consider few examples of multiobjective linear and nonlinear optimization problems and systems of fuzzy relational equations with different Archimedean t-norm based compositions. We are using the problems with objectives attaining values of same order so scaling of objectives is not required. The nature of the solutions obtained using the proposed procedure is investigated. The results
are compared with the results obtained using the modified NSGA-II\(^1\).

In our computational experiments of this paper, we used the following parameter settings:

Population size \(N_p\) : 60

Mutation probability \(\delta\) : 0.1

No. of nondominated solutions selected for each iteration \(n\) : 15

No. of successive fails for testing local search operator: 20

The experimental results for 6 test problems have been presented graphically from figures 8.2-8.16.

Example 8.1. Consider a four dimensional problem with fuzzy matrices \(A\) and \(b\) with max-product composition which is one type of Archimedean t-norm based compositions.

\[
A = \begin{bmatrix}
0.5042 & 0.0569 & 0.3641 & 0.2527 \\
0.9398 & 0.6578 & 0.0359 & 0.1663 \\
0.4979 & 0.3937 & 0.5715 & 0.9849 \\
0.7182 & 0.0330 & 0.9476 & 0.1271
\end{bmatrix},
\]

\[
b = [0.6120 \ 0.4284 \ 0.8075 \ 0.1083]
\]

The maximum solution obtained using (8.4) is \([0.4286 \ 0.6512 \ 0.1100 \ 0.8521]\). For this particular problem, the values of \(x_2\) and \(x_4\) of all solution vectors have to be fixed at 0.6512 and 0.8521 respectively. Therefore, we can focus on values of \(x_1\) and \(x_3\) only and the problem dimension reduces to two. The test results for some multiple linear and nonlinear optimization problems with this system of fuzzy relational equations as constraints are discussed below.

Case 1. min \[
\begin{align*}
f_1(x) &= x_1 + 2x_2 + 2x_3 + 4x_4, \\
f_2(x) &= 2x_1 - 3x_2 - x_3 - 9x_4.
\end{align*}
\]

The plot of the objective functions against Pareto optimal solutions describe the Pareto front (PF) or nondominated set. Figure 8.2 shows the set of approximate nondominated solutions obtained by optimizing 200 randomly selected weighted Tchebycheff functions and weighted linear functions using MOHGA procedure.

\(^1\)The modified NSGA-II is described in the Appendix B attached at the end of the thesis.
(a): Results with local search strategy #1
(b): Results with local search strategy #2
(c): Results with local search strategy #3
(d): Results without local search strategy

Figure 8.2: PF obtained using MOHGA procedure-Example 8.1-Case 1

Figure 8.3: PF obtained using modified NSGA-II-Example 8.1-Case 1
Case 2: $\min \begin{bmatrix} f_1(x) = 10(x_1 - 0.45)^2 + 10(x_3 - 0.35)^2, \\ f_2(x) = -6(x_1 - 0.7)^2 + 10(x_3 - 0.45)^2. \end{bmatrix}$

Figure 8.4 shows the nondominated set obtained using the proposed approach and modified NSGA-II.

Figure 8.4: PF obtained using MOHGA and modified NSGA-II - Example 8.1 - Case 2

Example 8.2. Consider a five dimensional problem with fuzzy matrices A and b with max-product composition:

$$A = \begin{bmatrix} 0.6733 & 0.5589 & 0.2222 & 0.7631 & 0.6683 \\ 0.0724 & 0.5040 & 0.0345 & 0.8572 & 0.2942 \\ 0.1731 & 0.8747 & 0.0050 & 0.2317 & 0.4581 \\ 0.6095 & 0.3837 & 0.0617 & 0.6200 & 0.6049 \\ 0.6277 & 0.6847 & 0.2072 & 0.9481 & 0.3522 \end{bmatrix}$$

$$b = [0.6090 \ 0.7541 \ 0.2010 \ 0.9199 \ 0.6044]$$

The maximum solution is obtained as $[0.9044 \ 1.0000 \ 0.8621 \ 0.9992 \ 0.9701]$. The
values of variables x_3 and x_5 of all solution vectors have to be fixed at 0.8621 and 0.9701 respectively. Therefore, we can focus only on the values of variables x_1, x_2 and x_4.

The test results for a multiple objective linear optimization problem with this system of fuzzy relational equations as constraints are discussed below.

\[
\begin{align*}
 f_1(x) &= -x_1 - 3x_2 + x_3 - 9x_4 - 4x_5, \\
 \min f_2(x) &= x_1 + 3x_2 - x_3 - 9x_4 + 4x_5, \\
 f_3(x) &= 3x_1 + 8x_2 - 5x_3 + x_4 + 6x_5.
\end{align*}
\]

(a). PF obtained with local search
(b). PF without with local search

Figure 8.5: PF obtained with and without local search-Example 8.2
Example 8.3. Consider a problem with fuzzy matrices A and b with max-product composition:

$$A = \begin{bmatrix} 0.7037 & 0.1254 & 0.3557 & 0.2861 & 0.4937 \\ 0.5221 & 0.0930 & 0.0490 & 0.2512 & 0.3663 \\ 0.7552 & 0.1345 & 0.7553 & 0.9327 & 0.5299 \\ 0.4785 & 0.0852 & 0.8948 & 0.1310 & 0.2099 \end{bmatrix}$$

$$b = [0.4551 \ 0.0811 \ 0.8511 \ 0.5620 \ 0.3193]$$

The maximum solution is obtained as $[0.6467 \ 0.8717 \ 0.6026 \ 0.9511]$. The variables x_3 and x_4 are super-essential so their values have to be fixed at 0.6026 and 0.9511, respectively in all solution vectors. Therefore, we can focus on x_1 and x_2 only. The test results for some multiobjective optimization problem with mixed objectives subjected to this system of fuzzy relational equations as constraints are discussed below.

$$f_1(x) = 0.3x_1 - x_2 - x_3 + 2x_4,$$

$$\min f_2(x) = (x_1 - 2x_2)^2 + 0.75(x_3 - x_4)^2 + (x_2 - 2x_3)^2 + 0.3(x_1 - x_4)^3.$$
Figure 8.8: PF obtained using MOHGA procedure - Example 8.3

Figure 8.9: PF obtained using modified NSGA-II – Example 8.3
Example 8.4. Consider a problem with fuzzy matrices A and b with max-product composition:

$$A = \begin{bmatrix} 0.9218 & 0.4057 & 0.0258 \\ 0.4059 & 0.9355 & 0.0113 \\ 0.1763 & 0.9169 & 0.0111 \end{bmatrix}, \quad b = [0.3529 \quad 0.8132 \quad 0.0099]$$

The maximum solution is obtained as $[0.3828 \quad 0.8693 \quad 0.8869]$. The variable x_1 of all solution vectors is fixed to be 0.3828. Therefore, we can focus on variables x_2 and x_3 only. The test results for a multiobjective nonlinear optimization problems with heterogeneous objectives subjected to this system of fuzzy relational equations as constraints are discussed below.

$$\begin{align*}
\min f_1(x) &= x_1^2 + 2\sin \pi x_2, \\
\max f_2(x) &= (x_1x_2 - 10), \\
\min f_3(x) &= 5x_1^3 - x_1x_2^2
\end{align*}$$

Figure 8.10 shows the nondominated set obtained using and without using the local search procedure. Figure 8.11 presents the Pareto front obtained with modified NSGA-II.
Example 8.5. Consider a problem with fuzzy matrices A and b composed of max-Hamacher fuzzy relation equations with $(x \ominus a) = \frac{x \cdot a}{x + a - x \cdot a}$, which is one type of the Archimedean t-norm:

$$A = \begin{bmatrix}
0.6 & 0.2 & 0.3 & 0.84 & 0.6 & 0.12 \\
0.2 & 0.7 & 0.1 & 0.7 & 0.2 & 0 \\
0.8 & 0 & 0.2 & 0.7 & 0.8 & 0 \\
1 & 0.6 & 0.4 & 0.6 & 0.5 & 0.1
\end{bmatrix}, \quad b = \begin{bmatrix}
0.3 & 0.4 & 0.2 & 0.4 & 0.3 & 0.1
\end{bmatrix}$$

The maximum solution can be obtained by using (8.4) that can be computed by:

$$\tilde{x} = \left[\min_{j \in J} (a_j \Theta b_j) \right]$$

where $a_j \Theta b_j = \frac{b_j a_j}{a_j - b_j + a_j b_j}$

The maximum solution is obtained as $[0.3750 \quad 0.4828 \quad 0.3243 \quad 0.2857]$. The variables x_1 and x_2 of all solution vectors are fixed at 0.3750 and 0.4828 respectively. Therefore, we look for the values of variables x_3 and x_4 only. The test results for multiple objectives linear optimization problem subjected to this system of fuzzy relational equations as constraints are discussed as follows:
Case 1: \[
\begin{align*}
\text{min } & \quad f_1(x) = 0.2x_1 - 2x_2 + 0.4x_3 - 0.7x_4, \\
& \quad f_2(x) = -0.5x_1 + 3x_2 - x_3 + 0.9x_4.
\end{align*}
\]

Figure 8.12: PF obtained using MOHGA and modified NSGA-II-Example 8.5-Case 1

Case 2: \[
\begin{align*}
\text{min } & \quad f_1(x) = 10(x_3 - 0.7)^2 + 10(x_4 - 0.7)^2 + 5, \\
& \quad f_2(x) = 10(x_3 - 0.5)^2 + 10(x_4 - 0.5)^2 + 7.
\end{align*}
\]

The surfaces of the two objective functions are shown in figure 8.13. The Pareto optimal solution set \{ \(x_1 = 0.3750, x_2 = 0.4828, x_3 = 0.3243, x_4 = 0.2857\)\} is a single optimal solution which is also the maximum solution as shown in figure 8.14.

Figure 8.13: Surfaces of objective functions defined in Example 8.5-Case 2
Example 8.6. Consider a problem with fuzzy matrices A and b composed of max-Lukasiewicz fuzzy relation equations with $(x \circ a) = \max(0, x + a - 1)$, which is one type of the Archimedean t-norm:

$$A = \begin{bmatrix} 0.5000 & 0.6000 & 0.2000 & 0.3000 \\ 0.7000 & 0.2000 & 0.6000 & 0.4000 \\ 0.8000 & 0.1000 & 0.2000 & 0.4000 \end{bmatrix} , \quad b = \begin{bmatrix} 0.4000 & 0 & 0 & 0 \end{bmatrix}$$

The maximum solution of the considered FRE can be computed as follows:

$$\hat{x} = \left[\min_{j \in J} (a_{ij} \Theta_j b_j) \right]_{i \in I} \quad \text{where} \quad a_{ij} \Theta_j b_j = \min(1, 1 - a_{ij} + b_j)$$

The maximum solution is obtained as $[0.4000 \ 0.4000 \ 0.6000]$. For this particular problem, the variable x_1 of all solution vectors is fixed at 0.4000. Therefore, we look for the values of variables x_2 and x_3 only. The test results for multiple nonlinear optimization problem subjected to this system of fuzzy relation equations as constraints are discussed below.
\[
\begin{align*}
\min & \quad f_1(x) = 10((x_2 / 0.4) + 1) + 18x_3, \\
& \quad f_2(x) = 5\sin((x_2 + x_3) + 10)
\end{align*}
\]

(a). PF obtained with local search
(b). PF obtained without local search

Figure 8.15: PF obtained with and without local search-Example 8.6

![Graph](#)

Figure 8.16: PF obtained using modified NSGA-II-Example 8.6

8.5.1 Quality evaluation

The multiobjective optimization has two distinct goals: (i). determination of solutions closer to Pareto front and (ii). finding diverse solutions as possible. A multiobjective evolutionary algorithm (MOEA) is termed as a good MOEA if both goals are satisfied adequately. Thus, a good MOEA must proceed to find a set of solutions that are closer to
the Pareto front and span the entire Pareto front. To evaluate the performance of the algorithm, a metric suggested by Veldhuizen [178] is used. The algorithm also gives an idea of the relative spread of solutions between the two sets; the obtained set of Pareto solutions and the Pareto front obtained from the algorithm modified NSGA-II. The algorithm is compared to the modified NSGA-II using the performance metric. The metric explicitly measures the closeness of the obtained solution set \(Q \) of \(N \) solutions from the proposed algorithm with a known set of Pareto optimal solutions \(P^* \) of the same size obtained from modified NSGA-II. The metric finds an average distance called as generational distance (G.D.), of the solutions of the set \(Q \) from \(P^* \) as follows:

\[
G.D. = \frac{\left(\sum_{i=1}^{|Q|} d_i^p \right)^{1/p}}{|Q|}
\]

For \(p = 2 \), the parameter \(d_i \) is the Euclidean distance in the objective space between the solution \(i \in Q \) and the nearest member of \(P^* \):

\[
d_i = \min_{r=1}^{|P^*|} \sqrt{\sum_{k=1}^{n} \left(f_k^i - f_k^{*(r)} \right)^2}
\]

where \(f_k^{*(r)} \) is the \(k^{th} \) objective function value of the \(r^{th} \) member of \(P^* \). Intuitively, an algorithm having a smaller generational distance is better. The solution set obtained with the proposed algorithm are compared with the solution set \(P^* \) obtained from the modified NSGA-II of the same size. Table 8.1 and 8.2 show the comparison of the quality of solutions and computational time for the three hybrid search strategies used for the three optimization problems using the weighted linear utility function and weighted Tchebycheff functions respectively. For the other optimization problems the traditional hybrid strategy #2 is used.

The comparison reveals that algorithm with strategy #1 on average results in efficient set with more solutions in comparison of the two algorithms.
8.6 Conclusion

A fuzzy relational multiobjective optimization problem has been considered. Using the utility function approach, the problem is first transformed into a single objective optimization problem. A hybridized genetic algorithm has been proposed that effectively decides and results in good approximations of the Pareto solutions in cases with both linear and nonlinear optimization problems. Two kinds of utility functions have been considered. Weighted Tchebycheff functions perform exceptionally well even when the shape of nondominated front is complicated in nature and result in more diversified and closer approximations of efficient solutions in comparison of the weighted linear utility functions. Experiments are performed with three local improvement techniques and their efficiency comparison is presented. Though the proposed method suffers from some deficiencies such as resulting sub-optimal solutions at end and more run time execution but can be used for the problems with a large number of objectives involved.