References
REFERENCES

capsulatus strain that synthesises geranylgeraniol esterified bacteriochlorophyll a. Biochemistry. 33: 12763-12768.

D.J. Chadwick, K. Ackrill. eds, John Wiley and sons, Chichester, UK, pp. 131-152.

Duncan J, Bibby T, Tanaka A and Barber J. (2003) Exploring the ability of chlorophyll b to bind to the CP43' protein induced under iron deprivation in a mutant of Synechocystis PCC 6803 containing the cao gene. FEBS Lett. 541: 171-175.

Flowers TJ and Yeo AR. (1992) *Solute Transport in plants.* Glasgow, Scotland: Blackie. 176pp

Granik S. (1959) Magnesium porphyrins formed by barley seedlings treated with δ-aminolevulinic acid. Plant physiol. 34, XVIII.

Heyes DJ, Menon BR, Sakuma M, Scrutton NS. (2008). Conformational events during ternary enzyme-substrate complex formation are rate limiting in the catalytic cycle of the light-

Holtorf H and Apel K. (1996a) Transcripts of the two NADPH– protochlorophyllide oxidoreductase genes *PorA* and *PorB* are differentially degraded in etiolated barley seedlings. *Plant Mol Biol.* 31: 387–392

encoding the chlorophyll-specific enzymes magnesium chelatase and magnesium protoporphyrin methyltransferase. *FEBS Lett.* 455, 349–354

176

Schoefs B, Bertrand M, Franck F (2000b) Photoactive protochlorophyllide regeneration in

Shibata K. (1957) Spectroscopic studies on chlorophyll formation in intact leaves. J. biochem. 44: 147-

Smith CA, Suzuki JY and Bauer CE. (1996) Cloning and characterization of the chlorophyll biosynthesis gene chlM from Synechocystis PCC 6803 by complementation of a
bacteriochlorophyll biosynthesis mutant of Rhodobacter capsulatus. Plant Mol Biol. 30: 1307-1314.

Solymosi K, Bődi B (2006) Optical properties of bud scales and protochlorophyll(ide)

