LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig: 1.1</td>
<td>Pulsed current wave form</td>
<td>2</td>
</tr>
<tr>
<td>Fig: 2.1</td>
<td>Cu-Ni Binary Phase Diagram</td>
<td>6</td>
</tr>
<tr>
<td>Fig: 2.2</td>
<td>Schematic diagram of (a) CC GTAW (b) PCGTAW</td>
<td>10</td>
</tr>
<tr>
<td>Fig: 2.3</td>
<td>A flowchart of Taguchi method for optimization</td>
<td>15</td>
</tr>
<tr>
<td>Fig: 2.4</td>
<td>Ishikawa Cause and Effect Diagram for PC GTAW process</td>
<td>24</td>
</tr>
<tr>
<td>Fig: 3.1</td>
<td>Experimental flow chart</td>
<td>29</td>
</tr>
<tr>
<td>Fig: 4.1</td>
<td>Base Metals of size 1000 x 500 x 5 mm (a) 90/10 Cu-Ni alloy plate</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(b) 70/30 Cu-Ni alloy plate</td>
<td></td>
</tr>
<tr>
<td>Fig: 4.2</td>
<td>Single V butt welds</td>
<td>32</td>
</tr>
<tr>
<td>Fig: 4.3</td>
<td>Gas tungsten arc welding machine with automatic welding speed equipment</td>
<td>32</td>
</tr>
<tr>
<td>Fig: 4.4</td>
<td>Welding torch arrangement with automatic welding speed & filler wire (manually feeding)</td>
<td>33</td>
</tr>
<tr>
<td>Fig: 4.5</td>
<td>A schematic diagram of the GTAW joint bead made perpendicular to the plate rolling direction & tensile test specimen cut from weld</td>
<td>33</td>
</tr>
<tr>
<td>Fig: 4.6</td>
<td>Laser welding machine</td>
<td>35</td>
</tr>
<tr>
<td>Fig: 4.7</td>
<td>Laser welding machine particulars</td>
<td>36</td>
</tr>
<tr>
<td>Fig: 4.8</td>
<td>Schematic layout of CO$_2$ LASER beam welding</td>
<td>36</td>
</tr>
</tbody>
</table>
Fig: 4.9 Experiment set up for Laser welding
Fig: 4.10 Square butt joint
Fig: 4.11 LECO’s LV700 Vickers hardness testing machine
Fig: 4.12 Bend test specimen
Fig: 4.13 Bend test
Fig: 4.14 Tensile specimen used as per ASTM- E8
Fig: 4.15 Universal Testing Machine(UTM) for Tensile test
Fig: 4.16 Failure of the sample during tensile testing
Fig: 4.17 Optical Microscope (OM)
Fig: 4.18 JOEL JSM 6610 SEM
Fig: 4.19 Basic Electrochemical System for Dynamic polarization
Fig: 4.20 Dimensions of specimen for corrosion test
Fig: 5.1 Effect of CC GTAW on microhardness of 90/10 Cu-Ni alloy welds
Fig: 5.2 Bent test of CC GTAW joints
Fig: 5.3 Effect of CC GTAW on Tensile strength of 90/10 Cu-Ni alloy welds
Fig: 5.4 Microstructures of (a) BM of 90/10 Cu-Ni alloy, & CC GTAW of 90/10 Cu-Ni alloy welds at (b) FZ (c) Interface (d) HAZ
Fig: 5.5 Effect of CC GTAW on microhardness of 70/30 Cu-Ni alloy welds
Fig: 5.6 Effect of CC GTAW on Tensile strength of 70/30 Cu-Ni alloy welds
Fig: 5.7 Microstructures of (a) BM of 70/30 Cu-Ni alloy, & CC GTAW of 70/30 Cu-Ni alloy welds at (b) FZ (c) Interface (d) HAZ
Fig: 5.8 Comparison of mean effect and S/N ratio of tensile strength of 90/10 Cu-Ni alloy welds 62
Fig: 5.9 Percentage of contribution of factors (Means) of PCGTAW of 90/10 Cu-Ni alloy welds 63
Fig: 5.10 Comparison of mean effect and S/N ratio of tensile strength of PC GTAW of 70/30 Cu-Ni alloy welds 67
Fig: 5.11 Percentage of contribution of factors (Means) of PC GTAW of 70/30 Cu-Ni alloy welds 68
Fig: 5.12 Effect of peak current on microhardness of PC GTAW of 90/10 Cu-Ni welds 73
Fig: 5.13 Effect of base current on microhardness of PC GTAW of 90/10 Cu-Ni welds 73
Fig: 5.14 Effect of pulse frequency on microhardness of PC GTAW of 90/10 Cu-Ni welds 74
Fig: 5.15 Effect of welding speed on microhardness of PC GTAW of 90/10 Cu-Ni welds 74
Fig: 5.16 Failure location of PC GTAW joint during tensile test: (a) top view and (b) cross sectional view 74
Fig: 5.17 Effect of peak current on tensile strength of PC GTAW of 90/10 Cu-Ni welds 75
Fig: 5.18 Effect of base current on tensile strength of PC GTAW of 90/10 Cu-Ni welds 75
Fig: 5.19 Effect of pulse frequency on tensile strength of PC GTAW of 90/10 Cu-Ni welds 76
Fig: 5.20 Effect of welding speed on tensile strength of PC-GTAW
Fig: 5.21 Effect of peak current on joint efficiency (%) of PC GTAW of 90/10 Cu-Ni welds
Fig: 5.22 Effect of base current on joint efficiency (%) of PC GTAW of 90/10 Cu-Ni welds
Fig: 5.23 Effect of pulse frequency on joint efficiency (%) of PC GTAW of 90/10 Cu-Ni welds
Fig: 5.24 Effect of welding speed on joint efficiency (%) of PC GTAW of 90/10 Cu-Ni welds
Fig: 5.25 Characteristics of PC GTAW of 90/10 Cu-Ni alloy welds
(a) PCGTAW- FZ (OM), (b) PCGTAW- FZ (SEM), and (c) EDS result
Fig: 5.26 Effect of peak current on fusion zone microstructure (50µm):
(a) 200 A (b) 210A (c) 220 A, and (d) 230 A
Fig: 5.27 Effect of base current on fusion zone microstructure (50µm):
(a) 95 A (b) 105 A (c) 115 A, and (d) 125 A
Fig: 5.28 Effect of pulse frequency on fusion zone microstructure (50µm):
(a) 0.5Hz (b) 1Hz (c) 3Hz, and (d) 5Hz
Fig: 5.29 Effect of pulse frequency on fusion zone microstructure (50µm):
(a) 140 mm/min (b) 150 mm/min (c)160 mm/min, and (d)170 mm/min
Fig: 5.30 Effect of peak current on microhardness of PC GTAW of 70/30 Cu-Ni welds
Fig: 5.31 Effect of base current on microhardness of PC GTAW of
70/30 Cu-Ni welds

Fig: 5.32 Effect of pulse frequency on microhardness of PC GTAW of 70/30 Cu-Ni welds

Fig: 5.33 Effect of welding speed on microhardness of PC GTAW of 70/30 Cu-Ni welds

Fig: 5.34 Bend test for PC GTAW joints

Fig: 5.35 Effect of peak current on tensile strength of PC GTAW of 70/30 Cu-Ni welds

Fig: 5.36 Effect of base current on tensile strength of PC GTAW of 70/30 Cu-Ni welds

Fig: 5.37 Effect of pulse frequency on tensile strength of PC-GTAW of 70/30 Cu-Ni welds

Fig: 5.38 Effect of welding speed on tensile strength of PC GTAW of 70/30 Cu-Ni welds

Fig: 5.39 Effect of peak current on joint efficiency (%) of PC GTAW of 70/30 Cu-Ni welds

Fig: 5.40 Effect of base current on joint efficiency (%) of PC GTAW of 70/30 Cu-Ni welds

Fig: 5.41 Effect of pulse frequency on joint efficiency (%) of PC GTAW of 70/30 Cu-Ni welds
Fig: 5.42 Effect of welding speed on joint efficiency (%) of PC-GTAW of 70/30 Cu-Ni Welds 92

Fig: 5.43 Characteristics of PC GTAW of 70/30 Cu-Ni alloy welds
(a) PC GTAW- FZ (OM), (b) PC GTAW- FZ (SEM), and (c) EDS result 93

Fig: 5.44 Effect of peak current on fusion zone microstructure (50µm):
(a) 200 A (b) 210A (c) 220 A, and (d) 230 A 95

Fig: 5.45 Effect of base current on fusion zone microstructure (50µm):
(a) 95 A (b) 105 A (c) 115 A, and (d) 125 A 96

Fig: 5.46 Effect of pulse frequency on fusion zone microstructure (50µm):
(a) 0.5Hz (b) 1Hz (c) 3Hz, and (d) 5Hz 98

Fig: 5.47 Effect of welding speed on fusion zone microstructure (50µm):
(a) 140 mm/min (b) 150 mm/min (c) 160 mm/min, and (d) 170 mm/min 99

Fig: 5.48 LBW of 90/10 Cu-Ni alloy welds of (a) Welding face side and (b) Root side 100

Fig: 5.49 Effect of Laser Beam welding (LBW) on Microhardness of 90/10 Cu-Ni alloy welds 101

Fig: 5.50 Effect of Laser Beam welding (LBW) on Tensile strength of 90/10 Cu-Ni alloy welds 102
Fig: 5.51 Effect of Laser Beam welding (LBW) on Joint efficiency (%) of 90/10 Cu-Ni alloy welds

Fig: 5.52 Optical micrographs, 200X (50µm), showing effect of Laser Beam Welding (LBW) speeds on Microstructures (FZ) of 90/10 Cu-Ni alloy welds

Fig: 5.53 Optical micrographs, 200X (50µm), showing effect of Laser Beam Welding (LBW) speeds on Microstructures (HAZ) of 90/10 Cu-Ni alloy welds

Fig: 5.54 SEM, 1000 X (10µm), showing effect of Laser Beam Welding (LBW) speeds on Microstructures (FZ) of 90/10 Cu-Ni alloy welds

Fig: 5.55 Tensile fractures of LBW of 90/10 Cu-Ni alloy welds

Fig: 5.56 SEM, 1000 X (10µm), showing tensile fractured surface of 90/10 Cu-Ni alloy (a) BM (b) welding speed 2.0 m/min

Fig: 5.57 LBW of 70/30 Cu-Ni alloy welds of (a) Welding face side and (b) Root side

Fig: 5.58 Effect of Laser Beam welding (LBW) on Microhardness of 70/30 Cu-Ni alloy welds

Fig: 5.59 Effect of Laser Beam welding (LBW) on Tensile strength of 70/30 Cu-Ni alloy welds

Fig: 5.60 Effect of Laser Beam welding (LBW) on Joint efficiency (%)
Fig: 5.61 Optical micrographs, 200X (50µm), showing effect of Laser Beam Welding (LBW) speeds on Microstructures (FZ) of 70/30 Cu-Ni alloy welds

Fig: 5.62 Optical micrographs, 200X (50µm), showing effect of Laser Beam Welding (LBW) speeds on Microstructures (HAZ) of 70/30 Cu-Ni alloy welds

Fig: 5.63 SEM, 1000 X (10µm), showing effect of Laser Beam Welding (LBW) speeds on Microstructures (FZ) of 70/30 Cu-Ni alloy welds

Fig: 5.64 Tensile test fractured specimens of LBW of 70/30 Cu-Ni alloy welds

Fig: 5.65 SEM, 1000 X (10µm), showing tensile fractured surface of 70/30 Cu-Ni alloy (a) BM (b) welding speed 1.5 m/min

Fig: 5.66 Bend test for LBW joints

Fig: 5.67 Potentiodynamic polarisation curves of 90/10 Cu-Ni alloy welds and aged samples in aerated 3.5%NaCl solution

Fig: 5.68 EDS results of BM of 90/10 Cu-Ni alloy welds

Fig: 5.69 EDS results of particle at weld centre of PCGTAW of 90/10 Cu-Ni alloy welds

Fig: 5.70 EDS results of particle at weld centre of LBW of 90/10 Cu-Ni alloy welds
alloy welds

Fig: 5.71 EDS results of particle at weld centre of CCGTAW of 90/10 Cu-Ni alloy welds

Fig: 5.72 Microstructures (FZ, 200X) of pitting corrosion of 90/10 Cu-Ni alloy welds (aerated 3.5%NaCl solution)

Fig: 5.73 Potentiodynamic polarisation curves of 70/30 Cu-Ni alloy welds and aged samples in aerated 3.5%NaCl solution

Fig: 5.74 EDS results of BM of 70/30 Cu-Ni alloy welds

Fig: 5.75 EDS results of particle at weld centre of LBW of 70/30 Cu-Ni alloy weld

Fig: 5.76 EDS results of particle at weld centre of PCGTAW of 70/30 Cu-Ni alloy welds

Fig: 5.77 EDS results of particle at weld centre of CCGTAW of 70/30 Cu-Ni alloy welds

Fig: 5.78 Microstructures (FZ, 200X) of pitting corrosion of 70/30 Cu-Ni alloy welds (aerated 3.5%NaCl solution)

Fig: 5.79 Micro hardness results –CC GTAW, PC GTAW & LBW of 90/10 Cu-Ni alloy welds

Fig: 5.80 Tensile strength results –CC GTAW, PC GTAW & LBW of 90/10 Cu-Ni alloy welds
Fig: 5.81 Joint efficiency results – CC GTAW, PC GTAW & LBW of 90/10 Cu-Ni alloy welds

Fig: 5.82 Microstructures (FZ) results – 90/10 Cu-Ni alloy of (a) CC GTAW (b) PC GTAW, & (c) LBW

Fig: 5.83 Microstructures (HAZ) results – 90/10 Cu-Ni alloy of (a) CC GTAW (b) PC GTAW, & (c) LBW

Fig: 5.84 Microstructures (Tensile fracture) results – 90/10 Cu-Ni alloy of (a) BM (b) CC GTAW, (c) PC GTAW & (d) LBW, SEM, 1000X (10µm)

Fig: 5.85 Micro hardness results – CC GTAW, PC GTAW & LBW of 70/30 Cu-Ni alloy welds

Fig: 5.86 Tensile strength results – CC GTAW, PC GTAW & LBW of 70/30 Cu-Ni alloy welds

Fig: 5.87 Joint efficiency results – CC GTAW, PC GTAW & LBW of 70/30 Cu-Ni alloy welds

Fig: 5.88 Microstructures (FZ) results – 70/30 Cu-Ni alloy of (a) CC GTAW (b) PC GTAW, (c) LBW

Fig: 5.89 Microstructures (HAZ) results – 70/30 Cu-Ni alloy of (a) CC GTAW (b) PC GTAW, (c) LBW

Fig: 5.90 Microstructures (Tensile fracture) results – 70/30 Cu-Ni alloy of (a) BM
(b) CC GTAW (c) PC GTAW, (d) LBW, SEM, 1000X (10µm)

Fig: 5.91 Bent specimens of (a) LBW joints (b) PC GTAW joints

(c) CC GTAW joints

Fig: 5.92 Weld bead width of CC GTAW, PC GTAW & LBW

128

128

129