ABSTRACT

LIST OF FIGURES

LIST OF TABLES

NOMENCLATURE

CHAPTER 1: INTRODUCTION

CHAPTER 2: LITERATURE REVIEW

2.1 Cupronickel (Cu-Ni) alloys

2.1.1 Phase diagram of cupronickel (Cu-Ni) alloys

2.1.2 Physical properties of cupronickel (Cu-Ni) alloys

2.1.3 Fabrications of cupronickel alloys

2.1.4 Resistance to corrosion and biofouling of cupronickel alloys

2.1.5 Applications of cupronickel alloys

2.2 Gas Tungsten Arc Welding Techniques

2.2.1 Continuous Current Gas Tungsten Arc Welding (CC GTAW)

2.2.2 Pulsed Current Gas Tungsten Arc Welding (PC GTAW)

2.2.3 Effect of CC GTAW and PC GTAW

2.3 Optimization of pulsed current gas tungsten arc welding (PC GTAW) process parameters by Taguchi method

2.3.1 Taguchi experimental design and analysis

2.3.2 Taguchi methodology

2.3.3 Identification of process parameters
2.3.4 Number of levels decided 15
2.3.5 Level settings 16
2.3.6 Selection of Orthogonal Array 17
2.3.7 S/N ratios and MSD analysis 17
2.3.8 Optimisation 18
2.3.9 Finding the optimal set 19
2.3.10 The predictive equation 19
2.3.11 Analysis of variance (ANOVA) 20
2.3.12 Verification 22

2.4 Influence of pulsed current gas tungsten arc welding (PC GTAW) process parameters on mechanical properties and microstructures of 90/10 and 70/30 Cu-Ni alloy welds 23

2.5 Effect of LASER beam welding (LBW) 25

2.6 Pitting corrosion 26

CHAPTER 3: OBJECTIVES AND SCOPE 28

CHAPTER 4: EXPERIMENTAL DETAILS 30

4.1 Selection of material for CC GTAW & PC GTAW of 90/10 & 70/30 Cu-Ni alloy welds 30

4.2 Experimental details of 3.5 KW CO2 laser beam welding of 90/10 & 70/30 Cu-Ni alloy welds 34

4.3 Evaluation of mechanical properties 38

4.3.1 Microhardness test 38
4.3.2 Bend test 39
4.3.3 Tensile test 39
4.4 Microstructure Characterisation 41
4.4.1 Stereo Microscopy 41
4.4.2 Optical Microscopy 41
4.4.3 Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) 41
4.5 Pitting Corrosion 42

CHAPTER 5: RESULTS & DISCUSSION 44
5.1 Mechanical properties of Base Metal (BM) and CC GTAW of 90/10 Cu-Ni alloys 44
5.1.1 Microhardness of Base Metal and CC GTAW of 90/10 Cu-Ni alloy 44
5.1.2 Bend test for CC GTAW joints 45
5.1.3 Microstructures of BM and CC GTAW of 90/10 Cu-Ni alloy welds 46
5.2 Mechanical properties of Base Metal (BM) and CC GTAW of 70/30 Cu-Ni alloys 48
5.2.1 Microhardness and Tensile Strength of Base Metal and CC GTAW of 70/30 Cu-Ni alloy 48
5.2.2 Microstructures of BM and CC GTAW of 70/30 Cu-Ni alloy welds 50
5.3 Optimisation of pulsed current gas tungsten arc welding (PC GTAW) process parameters by Taguchi method 51
5.3.1 Working limits of PC GTAW process parameters for 90/10 & 70/30 Cu-Ni alloy welds 51
5.3.2 Results and analysis of PC GTAW of 90/10 Cu-Ni alloy welds by Taguchi method

5.3.3 Analysis of variance (ANOVA)

5.3.4 Percentage of contribution

5.3.5 Confirmation test

5.4 Results and analysis of PCGTAW OF 70/30 Cu-Ni alloy welds by Taguchi method

5.4.1 Percentage of contribution

5.4.2 Estimation of optimum performance characteristics

5.4.3 Confirmation test

5.5 Influence of pulsed current gas tungsten arc welding (PC GTAW) process parameters on mechanical properties and microstructures of 90/10 & 70/30 Cu-Ni alloy welds

5.5.1 PC GTAW of 90/10 Cu-Ni alloy welds

5.5.2 Microhardness

5.5.3 Tensile properties

5.5.4 Joint efficiency

5.5.5 Microstructure

5.5.5.1 EDS analysis

5.5.5.2 Effect of peak current

5.5.5.3 Effect of base current
5.5.4 Effect of pulse frequency

5.5.5 Effect of welding speed

5.6 PC GTAW of 70/30 Cu-Ni alloy welds

5.6.1 Microhardness

5.6.2 Bend test on PC GTAW joints

5.6.3 Tensile properties

5.6.4 Joint efficiency

5.6.5 Microstructure

5.6.5.1 EDS analysis

5.6.5.2 Effect of peak current

5.6.5.3 Effect of base current

5.6.5.4 Effect of pulse frequency

5.6.5.5 Effect of welding speed

5.7 LASER beam welding

5.7.1 LBW of 90/10 Cu-Ni alloy welds

5.7.2 Microhardness

5.7.2.1 Tensile strength

5.8 LBW of 70/30 Cu-Ni alloy welds

5.8.1 Microhardness

5.8.2 Tensile strength

5.8.3 Microstructures
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.4 Bend test on LBW welds</td>
<td>113</td>
</tr>
<tr>
<td>5.9 pitting corrosion</td>
<td>113</td>
</tr>
<tr>
<td>5.9.1 Effect of pitting corrosion behavior in FZ of 90/10 alloy welds</td>
<td>114</td>
</tr>
<tr>
<td>5.9.2 Effect of pitting corrosion behavior in FZ of 70/30 alloy welds</td>
<td>117</td>
</tr>
<tr>
<td>5.10 comparisons of results of CC GTAW, PC GTAW & LBW of 90/10 & 70/30 Cu-Ni alloy welds</td>
<td>121</td>
</tr>
<tr>
<td>5.10.1 Optimised process parameters for PC GTAW</td>
<td>121</td>
</tr>
<tr>
<td>5.10.2 Mechanical properties of BM, CC GTAW, PC GTAW and LBW</td>
<td>121</td>
</tr>
<tr>
<td>5.10.3 Microstructures of 90/10 Cu-Ni alloy welds</td>
<td>123</td>
</tr>
<tr>
<td>5.10.4 Microstructures of 70/30 Cu-Ni alloy welds</td>
<td>126</td>
</tr>
<tr>
<td>5.10.5 Bend test</td>
<td>128</td>
</tr>
<tr>
<td>5.10.6 Weld bead</td>
<td>128</td>
</tr>
</tbody>
</table>

CHAPTER 6: CONCLUSIONS AND SCOPE FOR FURTHER WORK

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Mechanical properties & microstructures of 90/10 & 70/30 Cu-Ni alloy welds</td>
<td>130</td>
</tr>
<tr>
<td>6.2 Scope for future work</td>
<td>133</td>
</tr>
</tbody>
</table>

REFERENCES

LIST OF PUBLICATIONS